Molecularly Imprinted Polymers for Indium using a Novel Functional Monomer

Miruna Petcu
School of Engineering, Science and Primary Industries, Wintec, Tristram Street, Private Bag..., Hamilton 3240, New Zealand; miruna.petcu@wintec.ac.nz

Introduction

- The need for rapid extraction methods of high value metals has increased in recent years as demand has exceeded supply
- The global trend towards sustainable energy could be answered by solar panels; however, Indium(III) and other metals used in their construction are very expensive mainly due to high demand
- Indium(III) is present in large amounts in geothermal waters, but no reported attempt to extract, due to the high acidity and temperature of the known sources
- Molecularly imprinted polymers (MIPs) are materials known to uptake target molecules from harsh media, making them ideal candidates as an extraction tool
- Bilirubin (Fig 1) complexes strongly with transitional metals due its wide range of functional groups, and its ability to exhibit keto-enol tautomerism. This makes it suitable as a functional monomer in a MIP
- The current study reports complexation constants for the Indium(III)-bilirubin complex, the development of a polymer and its uptake characteristics in highly acidic media

![Bilirubin in its enol-keto forms](image)

Fig 1- Bilirubin in its enol-keto forms

Experimental

- Bilirubin-indium (III) titrations:
 - Performed in methanol and aqueous media (bilirubin dissolved in slightly basic solutions)
 - UV-Vis and fluorescence of the solutions monitored
 - UV-Vis at 500 nm, fluorescence emission at 560 and 660 nm
 - Presence of new fluorescence emission peaks associated with formation of complex
 - Enhancement of absorbance or fluorescence correlated with monomer-template ratio

- Polymers synthesized using a Indium(III)-bilirubin ratio determined from the template-functional monomer titration (unusual complex 1:10, confirmed IR)

- Tests performed to determine uptake of Indium(III) by polymers

- Binding tests were performed by passing Indium(III)-containing solution at a rate of 10 mL/min through 100 mg polymer

Discussion

Indium(III)-bilirubin complexes

Titrations (Figure 2) demonstrate two different complexes forming:
- 4:1 Indium(III)-bilirubin complex is observed in fluorescence studies
- 10:1 Indium(III)-bilirubin complex is observed in UV-Vis studies (absorbance too low to observe 1:4)
- Both complexes are characterised by strong absorbance/fluorescence enhancement; calculations show 1:4 and 1:10 complex formation
- Same type of complexes were observed both in methanolic and aqueous solutions
- Bilirubin is able to interact via nitrogen- Indium(III) known to form complexes with N ligands

![UV-Vis titrations with a range of Indium solutions](image)

Fig 2: UV-Vis titrations with a range of Indium solutions

Polymer synthesis and characterisation

- Combinatorial approach used, Indium(III) uptake characterised only from aqueous environments
- Optimum polymer composition determined
- Polymer uptake characterised from acidic media, response time of under 1 min was observed (Figure 3), polymer response linear over concentrations similar to the ones found in geothermal waters

![Uptake of Indium(III) from solution](image)

Fig 3: Uptake of Indium(III) from solution

Conclusion

The polymer performs well in acidic media mimicking geothermal waters. This has the potential to develop into a sensor or filter for extracting Indium from geothermal waters.

Acknowledgments

The author would like to thank Wintec for financial support.

References