MOLECULARLY IMPRINTED POLYMERS- APPLICATIONS IN ANAESTHETIC MONITORING

Miruna Petcu, School of Science and Primary Industries, Wintec

Overview

- Molecularly imprinted polymers
- Applications
- Anesthetic monitor development
- Problems encountered when marrying the chemistry and engineering

Molecularly imprinted polymers (MIPs)

MIPs

- Highly porousspecific and nonspecific binding
- MIP vs. Blank binding

Applications

- Biosensors
- Catalysis
- Chromatographic separations
- Purification

 Commercially available from small European companies and Sigma-Aldrich since last year

Propofol

- Active ingredient in anesthesia
- No side-effects
- Fast acting
- Used commonly in elderly patients and children
- Antibodies not sensitive enough

MIPs for propofol- problems

- Small molecule
- Steric hindrance
- Highly lipophilic
- Non-covalent interactions not sufficient

MIPs for propofol

MIPs for propofol

Tests-linearity

Tests- dynamics

Lowering non-specific binding

Tests

- Under 5 min
- Very specific
- Polymer picks up propofol in blood
- NEED- a quick detection test

Detection test (Gibbs)

Monitor development

Tests in monitor

- Blockages
- Browning effects
- Backpresssure problems
- Polymer not compatible with the monitor format

Thin film polymers

- Keep Teflon properties
- Coat membrane with polymer
- Advantages- flexible films, on support, behaving like small particles

Linearity tests

Tests in monitor

- Unreliable
- Membranes flaking off after a number of cycles
- Pockets of liquid trapped in membrane cartridges
- Shredded membranes lost polymer

Covalently modified thin films

*
$$\frac{\left(F_2 - F_2\right)_n}{\left(C - \frac{F_2}{C}\right)_n}$$
 * $\frac{Na}{\text{toluene}}$ * $\frac{\left(C - \frac{C}{F}\right)_n}{\left(C - \frac{C}{C}\right)_n}$ * $\frac{H_2O_2}{TFA}$ * $\frac{\left(C - \frac{C}{C}\right)_n}{\left(C - \frac{C}{C}\right)_n}$ * $\frac{\left(C - \frac{C}{C}\right)_n}{$

Linearity tests

Tests in monitor

- Uniformity
- Channeling of liquid in the cartridge
- More browning effects
- High CVs

Final polymer particle format

- 38-150 μm particles packed in cartridge
- No backpressure
- Rinse cycles had to be changed to remove the larger amount of nonspecific binding
- Same samples were tested via prototype and HPLC to double check results

Prototype- HPLC correlations

Tests in blood-crossreactivity

Conclusion

- Test under 5 minutes
- Specific binding in specified set of conditions
- Linear down to 0.1 ppm (under awake threshold)
- Not affected by other drugs
- Performs very well in spiked blood
- Next steps?

Acknowledgments

- FRST and Fisher&Paykel
- HortResearch (Peter Schaare)
- Kalmar University (Ian Nicholls, Susanne Wickmann)
- Silsoe University (Mike Whitcombe)