
`

Printing:
Minimizing Synchronization in Parallel Nested Loops

Reza Rafeh, Centre for Business, Information Technology and Enterprise, Waikato Institute of Technology, Hamilton, New Zealand, Reza.Rafeh@ wintec.ac.nz

Mohammad Hossein Roosta, Department of Computer Engineering, Islamic Azad University, Malayer Branch, Malayer, Iran

Abstract

Although computing power increases continuously, the need

for high computational speed in many scientific applications is

growing too. As a result, implementation of parallel applications

has gained more attention. Since nested loops are the most

time-consuming parts of most programs, we propose a method

for scheduling uniform nested loops to processors based on

the equation of a straight line which includes the maximum

possible number of dependence vectors. Experimental results

show that the proposed method imposes a lower

communication between processors compared with similar

methods.

Background
Parallel processing is a form of computing in which many instructions are executed 
simultaneously. The process of parallelization in general consists of three steps as 
follows :

• Decomposing the application into tasks

• Analyzing the dependencies between the decomposed tasks

• Scheduling tasks into the target parallel or distributed system

Generally, there are two types of dependency:

• Data dependencies 

X = Y;

Z = X;

• Control dependencies 

IF cond THEN s1 ELSE s2;

There are two types of nested loops based on dependencies:

• DOALL loops: Nested loops with no dependency.

• DOACROSS loops: Nested loops with dependencies which are divided into two 
categories: 

• Uniform: A loop in which the pattern of dependencies remains constant during its 
execution 

• Non-uniform. A loop in which the pattern of dependencies may have variations during 
execution.

Proposed Algorithm

Methods Results

Conclusions

We proposed a new algorithm, named BSLS, to reduce the communication cost of 

uniform nested loops which facilitates parallelizing such loops. To enhance data 

locality, BSLS finds the best straight line which encompasses the maximum number 

of dependence vectors. Chains are considered as lines parallel with the best 

straight line in the iteration space. Chains are assigned to processors periodically. 

Our experimental results show that BSLS imposes lower communication cost than 

Chain Pattern Scheduling (CSP).

Finding the 

dependence vectors

Assigning chains to 

processors 

References
• Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., & Siedlecki, K. (2011). Coarse-grained loop 

parallelization: Iteration space slicing vs affine transformations. Parallel Computing, 37(8), 479-
497.

• Bondhugula, U. (2013). Compiling affine loop nests for distributed-memory parallel architectures.
Paper presented at the Proceedings of SC13: International Conference for High Performance 
Computing, Networking, Storage and Analysis.

• Boulet, P., Darte, A., Risset, T., & Robert, Y. (1994). (Pen)-ultimate tiling? Integration, the VLSI 
Journal, 17(1), 33-51.

• Calland, P. Y., Darte, A., Robert, Y., & Vivien, F. (1998). On the removal of anti-and output-
dependences. International Journal of Parallel Programming, 26(3), 285-312.

• Ciorba, F. M., Andronikos, T., Drositis, I., Papakonstantinou, G., & Tsanakas, P. (2005). Reducing 
the communication cost via chain pattern scheduling. Paper presented at the Network Computing 
and Applications, Fourth IEEE International Symposium on.

for(int i=k; i<N; i++)

for(int j=l; j<M; j++){

A[i][j] = 5 * B[i-1][j-3];

A[i][j] = A[i][j] + B[i-2][j-2];

A[i][j] = A[i][j] – 2*B[i-4][j-1];

A[i][j] = A[i][j] + 4*B[i-4][j-3];

}

We compared our algorithm (BSLS) with Chain Pattern 

Scheduling (CSP) method in terms of communication


