Porosity and Micro-hardness of Shrouded Plasma Sprayed Titanium Coatings

Dr. Hong Zhou

Centre for Engineering and Industrial Design, Waikato Institute of Technology, Hamilton, 3240, New Zealand
zhouhong.nz@gmail.com
Dr. Hong ZHOU

Centre for Engineering and Industrial Design
Rotokauri Campus, Wintec
51 Akoranga Road,
Hamilton 3200
New Zealand
Phone: +64-(0)7-834 8800 ext 3330
Email: Hong.Zhou@wintec.ac.nz
About Wintec

Providing the skills and knowledge to build a stronger community and thousands of careers created, Wintec is New Zealand’s largest and leading Institutes of Technology/Polytechnics (ITPs).

With campuses strategically located throughout the region, we are a leading provider of high quality, vocational and education in the Waikato region.

You’ll discover that you have the power to create your world, the way you want it.

Empowering you

We understand that times are changing. Although our
Porosity and Micro-hardness of Shrouded Plasma Sprayed Titanium Coatings

OUTLINE

• Introduction
• Experimental
• Results
• Discussion
• Conclusion
Titanium and its alloys play important roles in industries as light metals.

Science & Technology
- Aircraft
- Car
- Medical
- Sport
- Marine
- Ti & Ti Alloy
Titanium and its alloys play important roles in industries as light metals.
Introduction

Nowadays, titanium and its alloys are often used as key materials for corrosion protection because of the spontaneous and instant formation of a very chemically stable, highly adherent, and continuous protective oxide film on the surface.
Introduction

Coating Technology

A promising approach to optimize both mechanical properties and corrosion resistance since corrosion attack is mainly limited to the outer region.

Figure: Schematic diagram of coating formation process during thermal spray.
Introduction

Titanium coating by shrouded/air plasma spraying technology

Objectives:

The difference between the two types of coating has been investigated in terms of porosity, microhardness, and microstructure.
Experimental

Powder

Commercially available HDH pure titanium powder (Xi'an Lilin International Trade Co., Ltd., Xi'an, China),

Table 1. Chemical composition of HDH titanium powder

<table>
<thead>
<tr>
<th>Element</th>
<th>H</th>
<th>O</th>
<th>N</th>
<th>C</th>
<th>Fe</th>
<th>Ti</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDH Ti powder [wt%]</td>
<td>0.23</td>
<td>0.35</td>
<td><0.03</td>
<td>0.07</td>
<td><0.11</td>
<td>Bal</td>
</tr>
</tbody>
</table>
Experimental

Shroud Design

Titanium is a very reactive metal at high temperatures due to its strong affinity with gases such as oxygen, nitrogen and hydrogen.

Figure: Schematic cross section illustrating the key features of the shroud.
Experimental

Plasma spraying

SG-100 plasma gun (Praxair surface technologies, USA) with the shroud attachment.

<table>
<thead>
<tr>
<th>Spray parameter</th>
<th>setting</th>
<th>Spray parameter</th>
<th>setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current, [A]</td>
<td>800</td>
<td>Powder feed rate, [g/min]</td>
<td>30</td>
</tr>
<tr>
<td>Voltage, [V]</td>
<td>80</td>
<td>Spray passes</td>
<td>10</td>
</tr>
<tr>
<td>Primary gas, Argon, [slpm]</td>
<td>85</td>
<td>Spray distance, [mm]</td>
<td>100</td>
</tr>
<tr>
<td>Auxiliary gas, Helium, [slpm]</td>
<td>18</td>
<td>Transverse speed, [mm/s]</td>
<td>500</td>
</tr>
</tbody>
</table>
Experimental

Plasma spraying

Shroud gas (argon) flow rate: 300 slpm

Special attention was given to adjusting the powder carrier gas flow rate within the shroud to generate an in-flight particle trajectory with a low angle of deviation from the central axis to prevent build-up of powder on the inside wall of the shroud.

Figure: The shroud attachment for plasma sprayed Titanium coatings
Experimental

Microstructure Characterization

Microstructure Observation

SEM, Hitachi S4700, Japan, with second electron imaging was operated at 20 kV to observe the microstructures and morphology of specimens.

Porosity

An Olympus BX60 optical microscope equipped with a digital camera was used to capture images for the porosity analysis of the titanium coatings. Porosity was then examined by using IQ image analysis software.
Experimental

Microstructure Characterization

Microhardness

Test was performed by using a Vickers indenter (LECO, Michigan, USA) with a load of 300 g for 15 seconds on the coatings cross sections. The cross sections of the titanium coatings were polished before indentations, and the distance between two indentations was at least three times the diagonal to prevent stress-field effects from nearby indentations. The Vickers microhardness was averaged from 10 indents per sample.
Results and Discussion

Powder morphology

Figure 1. SEM images showing the particle morphology of the HDH titanium powders. a) The HDH titanium powders with irregular shape; b) magnified region within the rectangle in a)
Results and Discussion

Titanium Powders

Phase composition

Figure: XRD pattern of the HDH titanium powder in the range of $2\theta = 20^\circ - 80^\circ$
Results and Discussion

<table>
<thead>
<tr>
<th>Powder size distribution</th>
</tr>
</thead>
</table>

Table. The particle size distributions of the HDH titanium powders

<table>
<thead>
<tr>
<th>d (0.1), μm</th>
<th>d(0.5), μm</th>
<th>d(0.9), μm</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.986</td>
<td>47.777</td>
<td>90.931</td>
</tr>
</tbody>
</table>

Note: The d (0.1), d (0.5) and d (0.9) mean that 10%, 50% and 90% of the volume fraction of the powder particles have particle sizes (in micrometre) below a particular value respectively.
Results and Discussion

Figure: Particle size distributions for the HDH titanium powder, curve (1) shows the volume percent at the corresponding particle size, and curve (2) shows the accumulated volume percent under the corresponding particle size.
Results and Discussion

Titanium coatings

Microstructure and coating porosity

Figure 2. SEM images showing the polished cross sections for a) plasma sprayed Ti coating with the shroud and (b) air plasma sprayed Ti coating without the shroud.
Results and Discussion

Titanium coatings

Microstructure and coating porosity

Figure: The porosity of the as-sprayed titanium coatings deposited with and without the shroud. The error bars represent the standard deviation.
Results and Discussion

Titanium coatings

Phase composition

Figure: XRD patterns in the range of 2θ=20-80 of a) the titanium coating plasma-sprayed without the shroud, (b) the titanium coatings plasma-sprayed with the shroud.
Results and Discussion

Titanium coatings

Vickers microhardness.

Figure: Vickers microhardness of titanium coatings deposited with and without the shroud. The error bars represent the standard deviation.
Conclusion

This work presents the feasibility of using the shrouded plasma spraying to fabricate titanium coatings, and air plasma sprayed titanium coatings were also deposited under the same conditions.

- The presence of the shroud and shroud gas flow led to a significant reduction in coating porosity.

- The shrouded titanium coating had a dense microstructure with a very low porosity; whereas the air plasma sprayed titanium coating possessed a high porosity.

- The air plasma sprayed titanium coating had a much higher Vickers microhardness and a relative larger standard deviation than the shrouded titanium coating.
Thanks for your attention