Powder Metallurgy
Thermal processing in MIM and Metal 3d Printing

PRESENTED BY:

CLAUS J. JOENS
President
Elnik Systems, LLC
Overview

• Company Overview
• Processing Technology Review
 • Metal Injection Molding (MIM)
 • Metal 3d Printing
• 1st Stage Debinding
• 2nd Stage Debinding
• Sintering
• Staging - Ceramics
• Quality Control
• Overview of DSH Technologies/Elnik Systems GmbH
• Questions
Elnik Systems, LLC

A Debind and Sinter Equipment Manufacturer/Provider for the Powder Metal Industry
Elnik’s Core Beliefs

- **Innovation**
 - Innovation leads to improvement and enhancement. Elnik is constantly looking to make its equipment more efficient and effective.
 - Elnik’s sister company, DSH Technologies with its production sized furnaces, provides a portal to test and experiment with new concepts, components, and solutions for customers to ensure complete functionality.
 - 3-6 Months on in house testing prior to release

- **Quality**
 - Elnik will never sacrifice quality of its equipment and sub-components in order to lower price.

- **Experience**
 - Elnik strives to provide its customers with the most exceptional customer support, service and delivers products and solutions that are functional and effective.

- **Excellence**
 - Elnik continuously strives for excellence in its equipment operation and customer experience.
 - Working relationships with existing customers leads to better overall equipment functionality and customer support
History by Pictures
MIM Process Technology

METAL INJECTION MOLDING PROCESS

Metal Powder → Binder → Feedstock → Brown Part → Sintered Part
Metal 3D Printing

Powder Bed Fusion
- Metal to Metal Fusion
- Via Laser

Powder Bed Adhesion
- Metal to Metal adhesion
- Via binder

Filament Deposition
- Layer by Layer printing of Metal/Binder feedstock or filament
Technology Cost comparison

Metal 3d Printing works best in low volume high complexity

MIM works best in mid/high volume high complexity
1st Stage Debinding

- Key step in process – Careful Process Control

- Removal of Wax/Polymer
 - Thermoplastic (Parafin, Carnuba, Oils), Polyacetal(POM), PEG

Examples of Debinding

- **Solvent**
 - Perchlorethylene, Trichlorethylene (Non-Flammable)
 - Heptane, Hexane, Acetone (Flammable)
 - Lower Temp, Slower Debind Time

- **Catalytic**
 - Nitric Acid / Oxalic Acid
 - Higher Temp, Faster Debind Time

- **Water**
Solvent Debinding

- Solvent
 - Perchloroethylene, Heptane, Hexane, Trichlorethylene, Acetone, Organics
- Country Regulations
- Disposal Requirements
Solvent Debinding

As Molded State

1st Stage Binder Removal

Brown Part
Catalytic Debinding

- Catalytic
 - Nitric Acid
 - Safety Adherence
 - N₂

- Polyacetal/POM Based Feedstocks
Catalytic Debinding
Water Debinding

• Water
 • Requires a drying oven
 • Disposal Requirements
 • Increased Process Time
 • Environmentally Friendly
Brown Part

2nd Stage Binder and Metal

Scanning Electron Micrograph (SEM) of “Brown Part”

Binder located at Metal Particle contacts.

Holds particles in position
TGA - Thermogravimetric Analysis

Materials Testing and Research Center

Thermogravimetric Analysis (TGA)

Date: February 6, 2017
Customer: DSH Technologies
Material: Metal feedstock

Atmosphere: Ar, 4 SCFH
Rate (°C/min): 2
Initial Weight (mg): 789.8
Final Weight (mg): 770.4
Weight Change (%): -2.46
Comments: Final weight recorded after cooling to room temperature.

Sample ID:

![Graph showing weight change vs. temperature](Image)
2nd Stage Debinding

- Thermal Binder Removal – Diffusion through open pores where WAX was
- “L” Transport distance increases over time.
- Hold times are dependent on part Geometry and Wall Thickness
Gas Flow

TURBULENT at 1013 mbar
High PSI Flow creating uneven flow and shadow effect.

LAMINAR at 400 mbar
Smooth/Even Flow
No Shadow Effect
Efficient binder removal

MOLECULAR at 0.133 mbar
Collisions/Unpredictability
Random Flow
Contamination – gas escapes to cold walls
Laminar Gas Flow

Reynolds number (Re) – Flow Pattern in different Flow Situations

Turbulent – High Reynolds (Inertial Forces)
Laminar – Low Reynolds (Viscous Forces)

Uneven gas distribution
= Uneven Temperature Uniformity
= Varying Debinding Results

Laminar Gas Flow
Even binder Removal
No re-deposition of binder on the part
Partial Pressure (400 mbar)
Gas Management

Key Design Features

Heated Process Gas
Shortest Distance Binder Removal

Low Temperatures
Conduction/Convection
Excellent Temperature Uniformity

High Temperatures
Radiation
Tight Temperature Distribution
Sintering

Stage 1: Before Sintering
Stage II: Formation of Necks
Stage III: Evolution of Necks and GB's and Elimination of Pores
Stage IV: Isolation of Pores

Neck
Pore

Grain
Open Pore
Network of Open Pores
Closed Pore
Sintering - Atmospheres

• **Hydrogen (H₂)** – reducing atmosphere
 • Avoiding Oxidation of metal particles
 • Carbon Control

• **Inert (Nitrogen - N₂)**
 • Steel or Ferrous material
 • Uses Carbon as Alloying Element

• **Argon (Ar)**
 • Titanium, Super Alloys

• **Vacuum**
Sintering - Expectations

- **Shrinkage**
 - 18-22% depending on feedstock MFG

- **Tolerances**
 - 0.3% typical

- **High Density**
 - Excellent Temperature Uniformity
 - Getting Close to Solidus Temperature

- **Carbon, Oxygen, Nitrogen Control**
 - High Purity Gases (99.999%)
 - Eliminating Leaks

- **Tensile Strength, Ductility, Grain Growth**
2nd Stage Debind and Sinter

Batch furnace

- Flexibility
- Vacuum capability
- “Lights out” manufacturing
- H₂ at partial pressures to 800 mBar
- N₂, Ar, H₂, Forming Gas, Vacuum
- Laminar Gas Flow
- High Power costs
- Lower Gas Costs
- Titanium process requires Batch furnace
2nd Stage Debind and Sinter

Continuous furnace

- High Volume Output
- Lower Energy costs
- High Gas costs
- High Idling costs
Elnik Retort Integration

- All MIM Debind/Sinter Equipment utilizes the same shelving systems
- Reduces Labor Time – Increases available production time
Example - MIM Parts

Photo courtesy of PIM International
Example - Metal 3D Printed Parts

Support Printed into part for post debind and sinter processing

Photo example of Desktop Metal printing process and Proprietary Anti Sinter Layer
Post Sintering

• Polishing
• Case Hardening
• Threading
• Tight Tolerance Machining
• Coining
• HIP’ing
• Etc...
Staging MIM Parts

- Life cycle of the part through entire process
Setter Design

• Flat ceramic trays, dense or porous

• Specially designed ceramic setters to part geometry
 • As Sintered Dimensions

• Injection Molded Setters
 • Ceramic Powders
 • Similar Geometry

• Design of MIM parts needs to include setting principles when applicable
Setter Material

- **AL** - Sintered Alumina, 96% Pure
- **ZTA** – Zirconia Toughened Alumina
 - Micromass
- **YSZ** – Yttria Stabilized Zirconia
 - Titanium
- **PSZ 63** – Calcia/Magnesia Stabilized Zirconia
- **PSZ 01** – Calcia Stabilized Zirconia
 - Titanium
- **PSZ 06** – Magnesia Stabilized Zirconia
- **Porous**
 - Better Gas Flow
- **ZLA**
 - Low Density
 - Machine easy, Dip Coat / Hot Fire sealed
 - Reduced cost special setter design
Setter Examples
Metal 3D Printed Parts

• Staging process is similar to that in MIM

• Challenges
 • High Complex Geometry (Internal structures difficult to support)
 • Designing supports and setters into the part for printing
 • Delamination of print layers
 • Proper print orientation for highest part quality and functionality
 • Standards!!
 • Trade organizations need to drive this

• Extremely high geometric flexibility
 • Many potential doors are opened

• 3D Metal printing leads to Powder Metal Education
 • MIM, Press and Sinter, ETC...
Quality Control

Necessary Laboratory Equipment

- Helium Pycnometer
- Microscope
- Oxygen
- Carbon
- Scales
- Micrometers and Calipers
- Comparator
- Hardness Tester
- Metallographic Analysis
- Powder Classification

- Quality checkpoints throughout entire process, typically after:
 - Feedstock
 - Injection molding
 - First stage debinding
 - Second stage debinding and sinter
• **Support/ Consulting**
 - MIM courses
 - Part analysis + Process Optimization
 - Toll Debind and Sinter + Over Capacity runs
 - Turn Key Solutions

• **Equipment**
 - 1st stage debinding – Water, Solvent and Catalytic
 - 2nd stage debinding and sintering – 2 - MIM3045 furnaces, HV, Survey TC’s.

• **Free DSH Consulting Services**
 - One Year with the purchase of each new MIM furnace from Elnik

• **Try Before You Buy**
 - Elnik offers 2 Free Trial runs on production sized furnaces at DSH, so long as a MIM furnace is purchased within 1 year of the trial run.
Why Partner with DSH Technologies?

- Knowledge
- Experience
- NDA's
- Toll Debind/Sinter
- Over Capacity Runs
- R&D work

Customer Testimonials:

“Superb” “Proficient”

“Always Fast Reaction Time.”

“Good Technical Support, Quick Reply.”

“Dr. Satya’s experience & interaction helped us to understand the methodology to set sintering parameters for various materials in Elnik furnace.”

“Obtaining guidance from DSH on setter and part design is quite useful to us.”

When we put our “knows” in your MIM business, you’ll save a fortune in Time and Money
Useful Links

• PIM International Magazine - http://www.pim-international.com/
• Metal AM Magazine - http://www.metal-am.com/
• PM Review - http://www.pm-review.com/

• Metal Powder Industries Federation - https://www.mpif.org/
• European Powder Metallurgy Association - https://www.epma.com/
• MIMExpertenKreis - http://www.mim-experten.de/en/welcome.html
THANK YOU