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Abstract 

Heat challenges multiple physiological systems, and its effects are heavily felt by 

endurance athletes due to the duration and intensity that must be sustained in competition 

and training sessions. Runners may demonstrate impaired thermoregulatory responses or 

opportunities due to lower rates of convective cooling and fewer opportunities to provide 

cooling interventions during exercise than other endurance athletes e.g. cyclists. Cooling 

strategies may be employed before or during exercise to minimise the effects of heat 

exposure, and their effects have been studied for at least three Olympic cycles. Hence, the 

optimisation of timing and method of delivery of cooling provision, with the addition of 

any novel strategies, would be of benefit to the contemporary sport and exercise science 

practitioner. 

Initially this thesis sought to better understand the effects of cooling strategies upon time 

trial performance in endurance sports with a systematic review and meta-analysis. The 

efficacy of strategies was assessed with respect to intervention timing (pre or per-cooling 

or both) and method of delivery (oral or topical or both). Cooling strategies were found to 

provide small but ecologically relevant improvements in time trial performance, especially 

when administered during the exercise bout to the oral cavity; the addition of menthol was 

seen to possibly enhance ergogenic effects. Hence, a second systematic review regarding 

external or internal application of menthol was conducted and found that menthol 

demonstrated improvements in performance when applied internally, most likely due to 

altered thermal and ventilatory responses.  

A range in menthol concentrations and dilution methods was noted in the literature, 

establishing a clear need for a randomised trial to ascertain menthol concentration 

preference. Following appropriate dilution, 0.1% menthol was determined to be preferred; 

colour preference was also established to maximise the perceptual cooling effect of 

menthol solution. This solution was then used (without colour to ensure blindness) in 

subsequent investigations. At rest this solution was shown to improve perceptions of 

thermal comfort, thermal sensation and thirst, when compared to carbohydrate and water 

swilling.  

Two exercise trials were conducted: the first examined the effects of menthol mouth 

swilling upon physiological and perceptual markers over four minute intervals at a range 

of pertinent running speeds (14-20km.h-1), and following 1km time trial performance. 

Effects on time trial performance were unclear, as were the effects in physiological 

parameters. Thermal comfort however was improved, with menthol mouth swilling 

counterintuitively increasing thermal sensation and thirst in the heat (35ºC), but 
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ameliorating these factors in the cold (15ºC). Secondly, at a fixed rating of perceived 

exertion, corresponding to 2mmol.L-1 blood lactate, runners demonstrated a lower oxygen 

consumption following menthol mouth swilling for the latter two thirds of a 30-minute 

training session than compared to no swill or ice swilling. No changes in ventilation were 

shown, and the perceptual responses at a group level were unclear – suggesting that whilst 

menthol may improve the oxygen cost of running at a fixed rating of perceived exertion, 

this does not correspond to improvements in thermoregulatory perception in this sample. 

Qualitative responses regarding the swill from the athletes involved in the exercise studies 

were collated and menthol was considered an enjoyable and useful strategy by the athletes. 

Further research is required to assess if these hedonic and utilitarian perspectives are rated 

as highly in more ecologically valid environments; the athletes indicated this would be the 

case. 

The findings presented in this thesis demonstrate that a light blue or light green 0.1% 

menthol mouth rinse is preferred and can alleviate thermal sensation and thirst, and 

improve thermal comfort at rest in the heat. During exercise in a small sample of trained 

distance runners, menthol mouth swilling may alleviate perceptual symptoms of heat 

exposure without necessarily improving performance, dependent upon the running speeds 

chosen. Furthermore, menthol mouth swilling is considered a pleasant and potentially 

ergogenic strategy by athletes who have used it, suggesting that even in the absence of 

performance or physiological enhancements that exceed the typical coefficient of variation 

in performance, menthol mouth swilling is a viable nutritional support strategy for trained 

distance runners, when exercising in the heat.
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CHAPTER 1 : INTRODUCTION 

 

1.1 Overview 

Heat is broadly considered deleterious to endurance exercise performance. This is because 

heat exacerbates physiological symptoms across multiple systems, that are contributory to 

fatigue (Périard, Racinais and Sawka, 2015; Racinais et al., 2015). The worsening of these 

symptoms may also impose perceptual challenges to the exercising athlete, which may 

also accelerate the onset of fatigue, volitional exhaustion or withdrawal from exercise. 

Heat challenges an athlete’s convective, evaporative and radiant cooling mechanisms, 

whereas cooling via conduction is unlikely during exercise performance. These 

impairments can be worsened by factors such as clothing choice, humidity, solar radiation, 

time of day and athlete and wind velocities (Maughan, 2010; Otani et al., 2016; 2017; 

Shimazaki, Yoshida and Yamamoto, 2015). Failure to minimise these effects increases the 

rate of heat storage experienced by an athlete, elevating core temperature and stressing 

cardiovascular, respiratory and sudomotor systems (Périard et al., 2015), hereby 

increasing the rate at which fatigue is experienced. 

Exercise performance in the heat is a contemporary and relevant topic for sport and 

exercise practitioners and scientists, not only due to elevated global temperatures as a 

result of global warming, but primarily because of the awarding of multiple major sporting 

tournaments to countries with high ambient temperatures (Gerrett et al., 2019) e.g. 

Commonwealth Games 2018, Gold Coast, Australia; Rugby World Cup 2019 and 

Olympics 2020 Tokyo, Japan; FIFA World Cup Qatar 2022. Therefore, strategies to 

minimise the effects of heat upon exercise performance are of international sporting 

importance, and the failure to do so will directly affect nations’ performances, recovery 

and medal counts at these pinnacle events. 

Each sport, due to variations in performance time, intensity and regulations, possesses a 

‘heat storage fingerprint’, which restricts the strategies that can be employed to cool 

athletes. For instance, it is unlikely that a sailor would employ the same cooling strategy 

as an equestrian due to their markedly different event environments, scoring criteria and 

time pressures. Hence a variety of strategies have been developed and investigated that 

can be broadly categorised via timing (pre or per-cooling) and type (ingested or topical; 

Best, Payton et al., 2018), and may be further classified by their mechanism of cooling, 

being either perceptual or physiological in nature. This presents the athlete, practitioner or 

sports scientist with a web of cooling strategies that can be employed, but practicalities 
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must always be considered, ultimately asking ‘What limits performance for this athlete in 

the heat and how can this be mitigated within the practical and regulatory constraints?’. 

The benefits of cooling strategies may extend beyond the physiological symptoms of a 

lower core or skin temperature. Recently, there has been growing interest in ameliorating 

the perceptual effects of exercising in the heat, which typically present as an increased 

thermal sensation and decreased thermal comfort (Flouris and Schalder, 2015). One such 

strategy is menthol application before and/or during exercise (Stevens and Best, 2017; 

Chapter 4). Menthol evokes feelings of cooling and freshness that are familiar to most 

cultures through confectionary or oral hygiene products, but may also be present in 

products used to treat muscular injury (Galeotti et al., 2002; Gaudioso et al., 2012), and 

has historically been used in respiratory medicine since at least the late 19th century (Potter, 

1890; Somers, 1896), following its characterisation in the mid-19th century (Oppenheim, 

1861;1862).  

Menthol has been applied topically during exercise, with little ergogenic effect seen 

following a single application (Gillis, House and Tipton, 2010; Barwood, Corbett and 

White, 2014; Gillis, Weston, House and Tipton, 2015) but may be beneficial if this applied 

repeatedly throughout the exercise bout (Barwood et al., 2018). Oral application of 

menthol via a mouth rinse however, has shown promise in runners (Stevens, Bennett, et 

al., 2016; Stevens, Thoseby, et al., 2016) and cyclists (Jeffries et al., 2018; Flood et al., 

2017; Mündel and Jones, 2009) and offers a method of menthol application that is easy to 

administer and more readily employed during exercise than a menthol cream or spray. 

Research assessing oral application of menthol upon time trial performance has to date 

focused exclusively in runners (Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 

2016), with athletes reporting 5km times of approximately 20-minutes or slower. Whilst 

this suggests menthol mouth swilling may alleviate perceptual heat symptoms and improve 

performance in recreational runners, there is a clear need to assess the efficacy of menthol 

mouth swilling in faster runners, who may display improved thermoregulatory abilities. 

Assessment of the product at a range of race specific intensities and training sessions is 

also warranted.  

 

1.2 Purpose of the research 

The primary aim of this thesis was to develop a novel mentholated solution to be 

administered as a perceptual cooling strategy for use during endurance exercise 

performance. This strategy was administered to trained middle and long distance runners 
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at competitive and training intensities and its effects compared to that of other ergogenic 

strategies, in hot environmental conditions.  

Specifically, this thesis aimed to determine the preferred concentration of menthol within 

a mouth swill, to be employed during subsequent studies (Chapter 5). Preferred colour was 

also assessed, with a view to producing a product for application outside of a controlled 

laboratory environment that maximised sensory cooling characteristics. This solution was 

then used in a series of investigations.  

Firstly, the physiological and perceptual responses of the mentholated mouth swill were 

compared to a carbohydrate solution and control swill, at rest, in hot environmental 

conditions (Chapter 6). Two exercise trials followed this initial resting experiment: Trial 

one (Chapter 7) assessed the ventilatory, physiological, performance and perceptual 

responses to mentholated mouth swilling at typical training and competitive intensities, in 

temperatures pertinent to British middle and long distance runners. Whereas trial two 

(Chapter 8) compared the ventilatory, physiological and perceptual responses of ice and 

mentholated mouth swill during a 30-minute training session, at a fixed rating of perceived 

exertion, in the heat. These studies were conducted in tandem, to replicate a typical training 

cycle with a view to increasing participant recruitment and retention. There was a 

negligible crossover in participant recruitment between the solution development and trial 

performed at rest to minimise expectancy and experience of mentholated mouth swilling.  

Finally, qualitative responses and feedback on menthol mouth swilling during exercise and 

its potential for application outside of the laboratory in differing environmental conditions 

and at different exercise intensities were captured (Chapter 9). 

 

1.3 Philosophical approach to the problem 

Throughout this thesis, it will become clear that a stance is taken with respect to three key 

tenets of exercise performance in the heat, fatigue and the characterisation of athletes. 

These concepts are examined in the literature review, and revisited throughout the course 

of the experimental chapters but their introduction here outlines the philosophy which 

underpinned the work presented, and how this work was conducted. 

Firstly, critical core temperature is considered a theoretical maximum temperature that can 

be sustained prior to the onset of (heat) exhaustion (Cheung and McLellan, 1998; González 

Alonso et al., 1999; Nielsen et al., 1993; 1997; Nybo and Nielsen, 2001). This assertion 

has been consistently challenged in the literature (Byrne et al., 2006; Ely et al., 2009), and 

may differ markedly between heat acclimation and training statuses (Cheung and 

McLellan, 1998; Racinais et al., 2019). Increasingly evidence is presented from applied 



 4 

investigations that demonstrate rectal temperatures >40ºC with absence of heat illness 

symptoms (Racinais et al., 2019; Stevens personal communication), suggesting that a high 

core temperature is a correlate of fatigue, and not the driver of fatigue per se. More likely 

is that it is an athlete’s interpretation of the ‘signal’ of being hot, relative to other 

physiological and psychological ‘noise’ of exercise performance, that produces fatigue. 

Secondly and similarly, an interoceptive approach to fatigue is adopted throughout this 

thesis. Interoception can be defined as a homeostatic sense of ‘How do I feel now?’ (Craig 

2002; 2009) from afferent physiological signals. This provides an established neurological 

framework that when applied to exercise, serves as a more complete model of fatigue than 

the Central Governor model, or purely physiological causes. The former being largely 

teleological, the latter perhaps too reductionist.  

Thirdly, the language used to characterise the training statuses of individuals in 

experiments is often ambiguous and/ or loaded. For instance, ‘untrained’ and ‘trained’ are 

frequently used in the literature but may not be operationalised. This issue if further 

complicated by adjectives such that ‘recreationally-trained’ or ‘well-trained’ may 

obfuscate and not elucidate the reader’s interpretation of participants’ fitness. Empirically 

defined training statuses, linked to physiological landmarks are more useful and are 

established for cyclists (De Pauw and Roelands, 2013), and to a lesser extent runners 

(Barnes and Kilding, 2015). Stratifying athletes by performance time is another method of 

classification; whilst one cannot necessarily label athletes by performance time, they 

provide a meaningful interpretation of physiological and performance capabilities – 

ultimately it is an athlete’s capability to realise physiological limits that elicits medal 

winning performances at major championships.   

 

1.4 Potential Impact 

This thesis adds to the body of literature concerning cooling athletes when performing in 

the heat. Perceptual cooling is a recent addition to this field, with the majority of prior 

research assessing physiological cooling strategies, employed before or during exercise. 

Despite menthol’s ability to impart feelings of cool and freshness being known since the 

late 19th century, recent use in sport and exercise has focused upon topical menthol 

application. However, this has shown limited efficacy and may even be deleterious with 

respect to thermoregulation, whereas the oral application of menthol has shown 

predominantly positive effects thus far, albeit in recreationally trained athletes, and 

presents a more practically viable strategy for menthol use during exercise. Therefore, this 

thesis is the first attempt to assess the effects of menthol mouth swilling in competitive 
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athletes that represent an empirically defined ‘well-trained’ group. This novelty is 

extended by examining a range of training and competition running speeds (Chapter 7) 

and assessing menthol’s efficacy in a typical training session (Chapter 8), emphasising the 

importance of trialling and establishing the effects of sports nutrition strategies in training, 

prior to use in competition (Maughan et al., 2018). Qualitative feedback is also included 

to support these findings (Chapter 9). 

The findings of this thesis have the potential to encourage commercial production of a 

mentholated beverage or swill for use during exercise in hot conditions, or potentially for 

those that suffer from dyspnoea, or more generally people who enjoy the oral cooling 

sensation of menthol. The commercial value of such a product is unknown, but is certainly 

pertinent with increasing global temperatures, and an increasing percentage of major 

sporting events being held in locations where ambient temperatures are either hot all year 

around, or will be hot at the time of major events. 
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CHAPTER 2 : REVIEW OF THE LITERATURE  

 

2.1 Heat as an applied problem for athletes 

Professional endurance sports are subject to an increasingly demanding global calendar; 

athletes must traverse continents, time zones and differing thermic environments, often in 

quick succession and with little to no time for acclimatisation (Table 2.1). This problem is 

potentially compounded in multi-day events such as cycling’s Grand Tours (Il Giro 

d’Italia, Le Tour de France & La Vuelta d’Espana), during which the climate may vary 

drastically daily, along with changes in course profiles, individual rider goals and teams’ 

strategies. Runners too, are well documented in their struggle to combat the heat during 

endurance competitions. Anecdotal and experimental evidence documents the challenges 

faced by former marathon world record holder Alberto Salazar when preparing and 

competing in thermally challenging environments (Stracher, 2013; Armstrong, Hubbard, 

et al., 2016), one such episode resulting in Salazar being read his last rites by a priest whilst 

submerged in an ice bath (Salazar and Brant, 2013; Stracher, 2013), akin to Pheidippedes 

after the battle of Marathon. All athletes are at the mercy of competitive organisation (or 

lack thereof) and regulations, provision of ingested and topical cooling strategies and the 

environment when competing in hot conditions. This chapter therefore will first describe 

the limiting factors of endurance performance and associated models of fatigue before 

detailing how heat is a fatiguing factor during endurance exercise and concluding with 

cooling strategies employed by athletes to limit the effects of heat on performance. 

 

2.2 Limiting factors of endurance performance 

Endurance performance is a complex, multi-factorial output driven by, and derived from 

multiple biological systems. Considerable debate exists within the literature as to whether 

fatigue is attributed exclusively to physiological, psychological and neurological factors 

via feed-forward and feedback mechanisms, or a combination of these systems. An 

understanding of these factors, under different conditions, is necessary to inform strategies 

implemented by athletes and practitioners to combat fatigue. In this section, a classic 

multi-factorial model (Joyner and Coyle, 2008) is described before examining limiting 

factors individually (Sections 2.2.1-2.2.3), and categorising them in a more contemporary 

fashion (Section 2.3), before outlining the challenges posed by exercise in the heat (Section 

2.4) and strategies to combat these (Section 2.5). 
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In their topical review, examining the physiology of champions, Joyner and Coyle (2008) 

proposed a schematic model of endurance performance that sought to explain the 

performance velocity or power output attained and sustained throughout a competition as 

an expression of performance V̇O2 plus performance O2 deficit, multiplied by gross 

mechanical efficiency. Each of these broad, primary factors are made up of sub-factors 

which are products of morphological adaptations and constraints (Joyner and Coyle, 

2008). More simply, this can be expressed as the difference between the aerobic or 

oxidative and the anaerobic or glycolytic contributions to exercise, whilst accounting for 

one’s (bio)mechanical efficiency. 

The aerobic contribution to performance (performance V̇O2) is a product of the V̇O2 at 

lactate threshold, which itself is a product of an athlete’s maximal oxygen uptake (V̇O2max) 

(both explored in Section 2.3.2.1). A high V̇O2max is considered a prerequisite for elite 

endurance performance. However, improvements in this parameter may contribute 

significantly more to short endurance events such as the 1500m than over longer events 

such as a marathon, where one’s capacity to exercise at a high percentage of V̇O2max over 

a prolonged duration is considered more important (D. W. Hill, 1999; Spencer and Gastin, 

2001; Duffield, Dawson and Goodman, 2005; 2007). The ability to sustain a high 

fractional utilisation of V̇O2max without the accumulation of lactate within the blood is the 

V̇O2 at lactate threshold (Joyner et al., 2020; Joyner and Coyle, 2008), with the V̇O2 of 

submaximal but pertinent running speeds considered an athlete’s running economy 

(Joyner et al., 2020; Saunders, Pyne et al., 2004; see Section 2.3.2.1 for further discussion). 

The mechanistic underpinnings of performance V̇O2 are predominantly cardiovascular and 

haematological, for example stroke volume and haemoglobin concentration (Joyner and 

Coyle, 2008), although intramuscular changes in factors such as capillary density and 

enzyme concentrations also encourage aerobic metabolism (see sections 2.2.1.2 and 

2.2.1.4 for further detail).  

Similarly, enzymatic factors and the distribution of resources and effort during the exercise 

bout can affect performance V̇O2 and performance O2 deficit. Increases in exercise 

intensity, possibly due to poor pace management, will increase performance V̇O2 and 

ultimately facilitate a performance O2 deficit. This transition will result in a greater 

oxidation of glycogen (see 2.2.1.4) and a concomitant increase in blood lactate 

accumulation, and dissociated H+ and P+ ions (Kent et al., 2016). This metabolic milieu 

may limit muscle contractility (Section 2.2.1.1) and thus hamper performance. This 

unfavourable intramuscular condition may be attenuated by endogenous or exogenous 
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buffers such as sodium bicarbonate (NaHCO3), sodium citrate (Na3C6H5O7) or beta-

alanine (C3H7NO2; R.L. Jones et al., 2016; Russell et al., 2014; Sale et al., 2011). 

Finally, the performance V̇O2 and performance O2 deficit manifest as a product of an 

athlete’s mechanical efficiency, which relies upon the phenotypic qualities and muscle 

fibre type preponderance of the athlete (Joyner and Coyle, 2008). Phenotypic adaptations 

are discussed in section 2.3.2.2, although it should be noted that with respect to running 

economy (i.e. performance V̇O2) alterations in bodyweight may explain up to 94% of 

variance within the measure (Lundby et al., 2017). With respect to muscle fibre type, Type 

I muscle fibres are considered more energetically efficient (Joyner and Coyle, 2008) than 

Type II fibres, but the relationship between muscle fibre type and running economy (and 

thus performance) is complicated by the mechanical complexity of running and an 

individual’s morphological and biomechanical constraints (Joyner and Coyle, 2008; 

Williams, 2007). Whilst complex, running economy can be improved in a relatively short 

time frame through appropriate loading of elastic tissues via plyometric and resistance 

training (Denedai et al., 2017) and chronically to high mileage endurance training (Jones, 

2006). 

The following sub-sections outline other physiological, psychological and environmental 

factors, not necessarily covered by Joyner and Coyle’s (2008) review, which contribute to 

fatigue. This examination of fatigue is then extended by describing other models of fatigue 

with particular reference to endurance performance (Section 2.3). 

 

2.2.1 Physiological 

2.2.1.1 Central Nervous System and Neuromuscular activation 

This section will introduce the role of the central nervous system and resultant 

neuromuscular activation as an explanation for fatigue during endurance performance. 

Information regarding how heat can affect these outcomes is noted in section 2.4.1.1. 

However, information pertaining to neurochemical theories of central fatigue are not 

included in either section to avoid deviation from the scope of the thesis, but have been 

concisely reviewed by McMorris and colleagues (McMorris, Barwood and Corbett, 2018). 

For the purposes of this literature review, central drivers of fatigue are considered factors 

which occur proximal to the neuromuscular junction (Carroll, Taylor and Gandevia, 2017) 

including the brain stem and spine; pertinent factors that present in the muscle i.e. distal 

to the neuromuscular junction are considered separately in section 2.2.1.2. 

Evidence for central factors as drivers of fatigue is predominantly presented in the form of 

that obtained following maximal voluntary contractions (MVC), or episodic maximal 
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contractions inserted within a submaximal or locomotor exercise bout (Carroll, Taylor and 

Gandevia, 2017). The assessment of central contributions to fatigue is complicated during 

locomotor activities due to time required to instrument participates potentially invalidating 

findings (Carroll, Taylor and Gandevia, 2017), and in sports such as running, eccentric 

contractions (Martin et al., 2004; G. Y. Millet, Tomazin, et al., 2011; G. Y. Millet, 2011) 

further compound this issue as eccentric activity can longitudinally decrease voluntary 

activation of damaged musculature (G. Y. Millet, Tomazin, et al., 2011).  

Despite this as exercise duration increases, a reduction in central drive is observed (Lepers 

et al., 2002; Tucker et al., 2004; E. Z. Ross et al., 2007; E. Z. Ross, Gregson, et al., 2010; 

E. Z. Ross, Goodall, et al., 2010). Similar effects are seen in sustained submaximal 

contractions, as measured by electromyography (EMG). A reduction in the ability to 

sustain a muscle contraction diminishes as duration increases, but is also associated with 

an increase in perception of effort (Lepers et al., 2002; Tucker et al., 2004), suggesting a 

partial role of central factors to endurance fatigue. An increase in motor unit recruitment 

as voluntary contraction duration increases is also seen, and corroborated by work that 

demonstrates a reduced contribution of central factors in sustained low-percentage 

contractions as load increases (Carroll, Taylor and Gandevia, 2017). This appears 

counterintuitive from a ‘below the neck’ perspective, as one would anticipate that as 

contraction/exercise duration increases there would be an increased contribution of 

peripheral factors to fatigue. Indeed, both may be true. The increased recruitment of motor 

units seen with low-percentage contractions imposes a greater central cost, but factors such 

as glycogen depletion and the accumulation of H+ and Pi ions within the muscle may also 

work to limit contractility (Kent et al., 2016) and increase perception of effort during 

sustained low-percentage contractions. These effects are also noted in lower-limb 

musculature not associated with the task, termed non-local muscle fatigue (Halperin, D. 

W. Chapman and Behm, 2015), suggesting central factors may both be contributing to and 

preventing fatigue, simultaneously, dependent upon muscle group recruited (Halperin, D. 

W. Chapman and Behm, 2015). 

A final consideration with respect to endurance performance is the rate of recovery of 

central factors following exhaustive endurance exercise. Given the threat to ecological 

validity imposed by the assessment of MVC during acute interventions noted above, 

studies that assess the time course of central responses hours-days after an endurance event 

potentially provide more meaningful data upon the cumulative effect of endurance 

exercise upon central factors, potentially supporting explanations of phenomena such as 

non-functional overreaching/ overtraining (Wijnberg et al., 2008) or relative energy 
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deficiency (Mountjoy et al., 2014; 2015), and informing recovery and training strategies 

post-event. Emma Ross demonstrates that neuromuscular factors are acutely impaired 

following a marathon demonstrate a relatively short rate of recovery within two days (E. 

Z. Ross et al., 2007). Ross adds to this with a study that simulated participation in Le Tour 

de France (E. Z. Ross, Gregson, et al., 2010) and found that although MVC values returned 

to baseline within two days, voluntary activation and motor evoked potential were 

inhibited from day 9 of the tour and remained supressed beyond the conclusion of the 

study (E. Z. Ross, Gregson, et al., 2010). Millet and colleagues (G. Y. Millet, Tomazin, et 

al., 2011) extended the assessment timeline to 16 days following a 166km ‘extreme 

mountain ultra-marathon’ (positive and negative elevation: 9500m) and participants’ 

values of EMG and force production data took nine and 16 days to return to baseline, 

respectively. For comparison, changes in blood borne markers of muscle damage 

demonstrated a faster recovery rate of five to nine days (G. Y. Millet, Tomazin, et al., 

2011). 

Central factors clearly cannot be ignored as a contributory factor to endurance exercise 

performance, but do not work in isolation. Whilst acute studies may limit direct transfer 

or ecological validity they provide a useful mechanistic snapshot of how fatigue is 

generated outside of the muscle, with the monitoring of these responses beyond exercise 

performance serving as useful indices of recovery. 

 

2.2.1.2 Muscular efficiency 

Exercise training proliferates changes within the muscle that are metabolically 

advantageous. These include, but are not limited to, increases in mitochondrial density, a 

more proximal location of substrate for mitochondria, enhanced enzymatic function and 

proliferation of enzymes corresponding to training metabolism/intensity. Muscle fibre 

type may also alter due to an exercise stimulus. Exercise alone may not drive intra-

muscular changes; other external stimuli such as diet (Leckey et al., 2006; D. M. Craig et 

al., 2015) and environmental stress (O. R. Gibson et al., 2017) may also ‘turn on’ the 

muscle to adapt. This section will provide a brief overview of mitochondrial and enzymatic 

adaptations to endurance exercise; mechanical and structural factors are discussed in 

section 2.3.2.2. Transcriptional factors are not discussed as much of this work is carried 

out in rodents who display different V̇O2 characteristics to humans (N. C. Gonzalez and 

Kuwahira, 2018), so limiting the contribution of such findings to the present discussion, 

although it is duly acknowledged that mitochondrial biogenesis is limited by 

transcriptional factors (Hood et al., 2006; Hawley et al., 2014). 
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Mitochondrial density increases with endurance exercise training (Vogt et al., 2001; 

Montero et al., 2015; Lundby and Jacobs, 2015; van der Zwaard et al., 2016; MacInnis 

and Gibala, 2016); specifically, this adaptation occurs in two locations, increasing 

intermyofibrillar mitochondrial content (80%) and subsarcolemmal (20%) mitochondrial 

content (Hood et al., 2006; Lundby and Jacobs, 2015), with greater mitochondrial content 

seen in Type I muscle fibres (Holloszy and Coyle, 1984; Schrauwen-Hinderling et al., 

2006; van der Zwaard et al., 2016). Mitochondrial density may increase by up to 40% 

following exercise training (Montero et al., 2015) and this increases the muscle’s ability 

to function aerobically. Metabolically this means a greater rate of lipolysis is possible at a 

given exercise intensity (Holloszy and Coyle, 1984), with these adaptations observed after 

a single bout of exercise in rodents (Picard et al., 2013), yet increased mitochondrial 

density is also associated with increased absolute and relative V̇O2max and skeletal muscle 

respiratory capacity (Lundby and Jacobs, 2015).  

The proximity of substrates to the mitochondria also changes following exercise training. 

Lipids, stored as intramuscular triglycerides, demonstrate a meaningful contribution to 

prolonged exercise at lower intensities, diminishing in a fashion that parallels glycogen 

depletion in moderate to high intensity exercise. Intramuscular triglycerides, again like 

glycogen, increase after consistent exercise training (Schrauwen-Hinderling et al., 2006), 

increasing as much as 2.5 times in trained athletes (Hoppeler et al., 1973).  

Mitochondrial function can be assessed through enzymatic activity associated with the 

respiratory capacity of the muscle (Lundby and Jacobs, 2015), whereas carbohydrate 

metabolism may be better assessed via pyruvate dehydrogenase (PDH) activity 

(Stellingwerff, 2005), due to preferential oxygenation during high intensity activity. A 

complete discussion is beyond the purpose of this section; however, it is noteworthy that 

oxidative phosphorylation capacity is associated with mitochondrial density and displays 

a response to training (Lundby and Jacobs, 2015; Montero et al., 2015), as does succinyl 

dehydrogenase activity (van der Zwaard et al., 2016). Nutritional manipulation may also 

modify enzymatic factors, for instance high fat feeding can impair glycogenolysis and 

decrease PDH (Stellingwerff, 2005), impairing high intensity exercise performance within 

the muscle. Such enzymatic reactions are an important consideration for the physiologist 

and associated athlete support staff as the impairment of exercise performance by 

enzymatic inhibition (Leckey et al., 2006; Burke et al., 2017) presents a clearly avoidable 

explanation for fatigue or underperformance, and further emphasises the trainability of the 

muscle at the molecular level. 
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2.2.1.3 Respiratory limits 

Maximal oxygen uptake (V̇O2max) and relative oxygen consumption i.e. exercise economy 

are discussed in Section 2.3.2.1, whereas this section will provide a brief discussion on 

V̇O2 kinetics and ventilatory threshold (VT) and their ability to limit or differentiate 

between levels of performance. Respiratory exchange ratio (RER). is discussed in the 

following sections as whilst it is calculated from respiratory parameters V̇CO2 and V̇O2, it 

is commonly used as an expression of substrate oxidation. 

V̇O2 kinetics physiologically describe the transition from a resting state to that of 

metabolic activity with respect to oxygen consumption at the point of the muscle (in 

healthy individuals), as opposed to V̇O2max which may be limited by a range of upstream 

factors (Poole and A. M. Jones, 2012). This progression from resting to meeting the V̇O2 

of an activity is primarily considered in exercise settings, however it also reflects 

spontaneous shifts in metabolic activity brought about by daily living activities such as 

climbing stairs, getting up from a chair or play in children. A standard V̇O2 kinetic curve 

is typically displayed in two parts: a fast component, and a slow component. The fast 

component occurs at the onset of exercise and is measured by the time constant, tau (𝜏) 

which may span a range of 10-100sec (Poole and A. M. Jones, 2012), and is a marker of 

how rapidly the demand of exercise is met i.e. how quickly one reaches a steady state of 

oxygen consumption (V̇O2SS). The slow component denotes a progressive increase in V̇O2 

as exercise duration increases and is predominantly attributed to metabolic and mechanical 

changes within the exercising muscle, but factors such as V̇E and auxiliary muscular 

recruitment may also contribute to the increasing oxygen cost (Poole and A. M. Jones, 

2012).  

Faster kinetics (elevated 𝜏) are considered beneficial, as this speeds the rate at which V̇O2 

at the muscle matches the demand of exercise, and so are seen in trained endurance athletes 

(Kilding, Winter and Fysh, 2006; Kilding, Fysh and Winter, 2007) or animals such as 

greyhounds and horses (Poole and Erickson, 2011). Ergo, slower kinetics limit the rate at 

which one can respond to the demands of exercise and may be seen in lesser trained 

individuals, or those unable to meet the demands of exercise. Applied examples of V̇O2 

kinetics include fast starts during a race which challenge the fast component (A. M. Jones 

et al., 2007; Bailey et al., 2016), training at intensities that elicit V̇O2max (Billat et al., 2000) 

or the ventilatory threshold which both challenge the slow component and the use of high 

intensity exercise to prime V̇O2 kinetics (Ingham et al., 2013). Based upon the evidence 

presented above, V̇O2 kinetics provide a limitation for endurance performance at the onset 

of and throughout exercise, its development results in a faster metabolic attainment of the 
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oxygen demands of an exercise intensity (𝜏) and may also reduce the progressively greater 

energy turnover associated with prolonged exercise (slow component (Burnley and Jones, 

2007; Jones and Burnley, 2009). Another factor which behaves similarly to the V̇O2 slow 

component is that of ventilatory threshold. 

 

Figure 2-1 A typical V̇O2 kinetics curve, with faster and slower fast and slow components also illustrated 

Ventilatory threshold (VT), measured in L.min-1, is a common marker used to establish 

the onset of anaerobic respiration, and has been moderately correlated with 40 km cycling 

time trial performance (Amann et al., 2004) and the pace sustained for a marathon (Loftin 

et al., 2007). Ventilatory threshold (VT) can simply be defined by assessing a change in 

the behaviour of ventilation (V̇E); below the VT V̇E displays a linear response to 

increasing exercise intensity, whereas above VT the behaviour of V̇E is a non-linear 

exponential (Sigmoid curve). The concept of VT was developed by Wasserman & McIlroy 

(1964) and documents, through respiratory assessment, a shift in metabolic conditions 

from aerobic to anaerobic. When VT is passed, arterial concentration of bicarbonate is 

rapidly lowered and there is an onset of blood lactate accumulation (OBLA; (K. 

Wasserman and McIlroy, 1964)). Thus, the velocity corresponding to VT can be 

considered an assessment of the maximal respiratory aerobic steady state, differing to 

V̇O2max which is an independent but interrelated respiratory marker. Age and training 

affect ventilatory properties, with younger individuals expected to possess larger V̇E 

capacity (Blackie et al., 1991; Everman et al., 2018), with a greater V̇Emax attained due to 
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training in one’s youth considered protective of aerobic fitness as one ages (Everman et 

al., 2018).  

Athletes are capable of exercising at higher absolute ventilatory values (L.min-1) than 

sedentary counterparts (Faull, Cox and Pattinson, 2016), with similar differences seen 

when adults are compared to children (Mahon, Gay and Stolen, 1998), yet when V̇E is 

expressed as a %V̇O2max similarities are seen across populations (Mahon, Gay and Stolen, 

1998; Fabre et al., 2013; Faull, Cox and Pattinson, 2016; Everman et al., 2018). 

Importantly, ventilatory responses display differences between exercise modalities 

(running vs. cycling), most likely due to differences in posture and resultant muscular 

recruitment (Hue et al., 2000; Tanner, Duke and Stager, 2014). Triathletes provide a 

unique example of this fact, as they have been reported to produce consistent ventilatory 

responses in running and cycling tasks within themselves and display similar V̇O2max 

values to single sport specialists, but when compared to runners of matched ability possess 

a lower VT (Hue et al., 2000), suggesting a sport specific ventilatory signature possibly 

forged through a comparatively greater training volume at the velocity associated with VT 

or a relative neglect of running in comparison to cycling when expressed as a percentage 

of training duration/volume (Hue et al., 2000; Neal, Hunter and Galloway, 2011; Mujika, 

2014). 

In conclusion, V̇O2 kinetics and VT may limit endurance performance, both are respiratory 

parameters that display development following endurance training; such development is 

also likely to affect substrate utilisation during exercise which is discussed presently.  

 

2.2.1.4 Substrate use 

The fuel preferentially selected for metabolism during exercise is largely dependent upon 

exercise duration and exercise intensity, but may also be influenced by acute nutrition, 

biological sex, body composition, (genetic or lifestyle) disease state, habitual diet and 

training status. To simplify the forthcoming discussion, protein is sparingly oxidised 

during exercise and typically only constitutes 2-3% of the energetic contribution to 

exercise, this may increase during prolonged or fasted exercise (Gibala, 2007), but is still 

limited due to the importance of nitrogen containing processes within the body (Weber, 

2011), hence a desire to minimise the oxidation of branched chain amino acids (Gibala, 

2007) and spare protein during aerobic exercise. For this reason, respiratory gas analysis 

typically assumes protein to have a fixed contribution during exercise and is not commonly 

reported; this contribution will vary depending on the analysis method used. 
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The energetic contribution from carbohydrate (CHO) increases with exercise intensity, 

and decreases as exercise duration becomes prolonged. Fat oxidation though displays an 

inverse relationship with exercise intensity and increases in energetic contribution as 

exercise duration increases. These changes in substrate use are expressed either by the 

respiratory exchange ratio (RER) or the respiratory quotient (RQ); RER is calculated by 

dividing V̇CO2 by V̇O2 and is commonly used as a measure of exercise intensity and a 

secondary marker of volitional exhaustion during maximal exercise (Deuster and Heled, 

2008). This value can exceed 1.0 under non-steady state exercise conditions and therefore 

reflects the increased ventilatory rate and lactate [La] metabolism brought about by 

increased CO2 production (Goedecke et al., 2000).  Whereas RQ is used to determine the 

substrate being oxidised at rest or during steady state conditions and cannot exceed 1.0 as 

it is reflective of the substrate being oxidised at the level of the tissue (Deuster and Heled, 

2008). In both instances values <0.8 are thought to reflect exclusively fat oxidation, 0.8-

0.9 are representative of mixed metabolism (CHO and fat oxidation) and values ≥ 1.0 

indicate exclusively carbohydrate oxidation (Romijn et al., 1993; G. A. Brooks and 

Mercier, 1994; Deuster and Heled, 2008; Dasilva et al., 2011). Ketosis may induce lower 

RER/RQ values of 0.66-0.73, having been induced either by exercise, a ketogenic diet, 

consumption of exogenous ketone esters or salts or prolonged fasting (Evans, Cogan and 

Egan, 2016). Ketogenic diets may be used in the treatment of some clinical conditions (e.g. 

Epilepsy and McArdle’s disease (Vorgerd and Zange, 2007; Boison, 2017)) as ketones 

provide a viable alternative substrate for the brain, but the balance of the evidence does 

not support their adoption in competitive endurance performance (Burke, 2015; Evans, 

Cogan and Egan, 2016; Burke et al., 2017; Burke and Hawley, 2018). 

Endogenous sources of CHO present an efficient but limited source of rapidly oxidised 

fuel for the body. One gram (1g) of CHO contains ~4kcal and when oxidised can produce 

5.05kcal of energy, but stores are limited to an approximate maximum of 3000kcal in a 

70kg trained male, across plasma (20kcal), hepatic (650kcal) and muscle (2300kcal) 

sources (Rapoport, 2010). Conversely fat presents a relatively unlimited source of fuel in 

even the leanest individuals, but is inefficiently and slowly oxidised, as 1g of fat (9kcal) 

yields only 4kcal of work and therefore requires more oxygen to be consumed for complete 

oxidation (Rapoport, 2010).  

The constraints of endogenous substrate use are overcome by the ingestions of exogenous 

fuel sources. Research has centred on CHO provision, with increases in the rate of 

carbohydrate consumption and the ingestion of a combination of carbohydrate sources 

recommended as exercise duration increases (Jeukendrup, 2014; 2017). Training one’s 
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stomach to tolerate these strategies is also encouraged (Jeukendrup, 2014; de Oliveira, 

Burini and Jeukendrup, 2014; Costa, Hoffman and Stellingwerff, 2018), and is likely 

limited by the number of glucose transporter proteins dedicated to each monosaccharide 

(SGLT-1 and GLUT5; glucose and fructose, respectively) within the intestinal lumen 

(Jeukendrup, 2014; 2017). The use of alginate has recently been thought to increase the 

upper tolerable limit of carbohydrate ingestion during exercise (Sutehall et al., 2018), 

evidence is preliminary despite alleged widespread use by elite athletes in major 

marathons. 

Another strategy that has been shown to increase the availability of CHO during exercise 

is carbohydrate loading. Carbohydrate loading consists of increasing one’s CHO intake in 

the days preceding an event, increasing hepatic and muscle glycogen stores through super-

compensation (Rapoport, 2010; D. T. Thomas, Erdman and Burke, 2016), typically by 30-

100% (Sedlock, 2008), however the degree of glycogen super-compensation does not 

accurately predict subsequent exercise performance (Sedlock, 2008). Practically, this may 

mean that an athlete is encouraged to eat ~10-12g.kg-1 of CHO per day, 36 – 48 hours prior 

to the event (D. T. Thomas, Erdman and Burke, 2016). As with the provision of exogenous 

CHO during exercise, an athlete may be encouraged to consume sources of multiple 

transportable CHO e.g. fruit juice (fructose), confectionary (glucose), rice or pasta 

(starchier complex carbohydrates).  

On the other hand, exogenous fat intake during exercise, either through ingestion of 

medium chain triglycerides or long chain triglycerides is discouraged. Neither strategy 

enhances performance, and is associated with increased prevalence of gastrointestinal 

upset (Hawley, 2002). Glycogen sparing i.e. a reduction in glycogenolysis and or CHO 

oxidation (15 – 48% reduction; Hawley, 2002), is seen during moderate to high intensity 

aerobic exercise (65-90% V̇O2max) following increases in fat availability during exercise. 

However, chronic feeding of a high fat diet doesn’t necessarily impair one’s ability to 

resynthesize glycogen (Volek et al., 2016) but does impair one’s ability to oxidise CHO 

in as little as five days (Stellingwerff, 2005), most likely through downregulation of PDH 

and upregulation of hormone sensitive lipase (Stellingwerff, 2005), in essence these 

adaptations are ‘glycogen impairing’ as opposed to ‘glycogen sparing’ (Burke, 2015). 

To conclude, the evidence presented suggest that maximising CHO oxidation and 

provision during exercise leads to either a faster and or more economical performance due 

to an increased metabolic return of CHO per g, and lower V̇O2 consumption. This can be 

further increased through feeding of exogenous CHO during exercise, or by carbohydrate 

loading. Alginates represent an emerging but heavily commercialised future research 
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direction, whereas the provision of fat during exercise would inhibit CHO oxidation, and 

may increase the risk of gastrointestinal distress. Ultra-endurance exercise is limited in a 

different way, nutritionally speaking, to classical endurance distances due to the prolonged 

nature and logistical challenges of such events, for further information the reader is 

directed to recent reviews on nutrition (Costa, Hoffman and Stellingwerff, 2018) and 

hydration (Hoffman, Stellingwerff and Costa, 2018) for ultra-endurance events. 

 

2.2.2 Psychological 

Whilst there is a body of literature that assesses the psychological nature and sources of 

fatigue; for the purpose of this thesis these factors and models are considered to be 

manifestations and subsequent interpretation and interaction of underlying chemical, 

physiological and nutritional statuses that potentially alter central and peripheral factors, 

at or below the level of the brain. Such factors are elaborated upon in subsequent sections, 

and so this section serves to briefly introduce key concepts and direct the reader to 

thorough reviews of literature in these areas. For a review of the potential role of 

neurotransmitters in fatigue please see(Roelands et al., 2013; Roelands, De Pauw and R. 

Meeusen, 2015), with a review of psychological determinants of endurance exercise 

performance provided by McCormick (McCormick, Meijen and Marcora, 2015). 

 

2.2.3 Environmental 

This section will briefly describe environmental factors that may impair endurance 

exercise performance, with comment upon the physiological mechanisms by which they 

limit performance, and how they have been attenuated to date. Acclimation and 

acclimatisation strategies will not be discussed at length, but are included to provide an 

impression as to the time course of physiological adaptations and performance recovery 

under each environmental condition. 

 

2.2.3.1 Altitude 

Increases in altitude, decrease the partial pressure of oxygen and therefore reduce the rate 

at which oxygen can saturate red blood cells as they move through capillaries around 

alveoli. This lower partial pressure, coupled with the increased aerobic demand of 

(endurance) exercise places significant strain upon an athlete and limits exercise through 

a reduction in oxygen availability and uptake at the muscle and subsequent downstream 

metabolic effects. These may include, but are not limited to, an increase in carbohydrate 

metabolism (P. U. Saunders, Pyne and Gore, 2009; West, 2012), suppressed appetite 
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(Wasse et al., 2012), decreased V̇O2max (and therefore an increased %V̇O2max for a fixed 

intensity), increased rating of perceived exertion for the same exercise intensity (Sharma 

et al., 2017), and endurance performance reductions of 10-20% slower than sea level 

records (P. U. Saunders, Pyne and Gore, 2009)  

The body undergoes a range of cardiovascular, haematological, hormonal and metabolic 

adaptations in response to altitude exposure, with most driven by hypoxia inducible factor 

1 alpha (HIF-1 α) which acts as a signalling molecule for a range of transcription processes 

(West, 2012). With respect to the cardiovascular system, acute altitude exposure causes an 

increase in heart rate, stroke volume, and consequently cardiac output (Samuels, 2004; 

West, 2012; Brown and Grocott, 2013; Khodaee et al., 2016). Erythropoiesis (increased 

red blood cell production) increases the haemoglobin content of the blood by increasing 

the number of red blood cells due to erythropoietin (EPO) secretion (Baker and Parise, 

2016; Płoszczyca, Langfort and Czuba, 2018), and supports this by reducing plasma 

volume content (Płoszczyca, Langfort and Czuba, 2018) to increase the relative oxygen 

carrying capacity of the blood via haemoconcentration. This is the primary adaptation that 

is of interest to endurance athletes, and is illegally accelerated in athletes either through 

the use of recombinant EPO (Sgrò et al., 2018), or by blood doping (Fitch, 2017). There 

is also an increased anaerobic and therefore CHO contribution during exercise when at 

altitude, meaning a greater blood lactate response for lower intensity exercise than at sea 

level; this has performance and training implications, as repetition duration or intensity 

may need to be reduced, or recovery interval duration increased. In mountaineers these 

changes can occur rapidly, notably altering within 15 days despite ascending in altitude up 

to >4000m during this time (Windsor and Rodway, 2007). The time course of adaptation 

to altitude is like that of heat, which is outlined in section 2.2.3.3. Athletes may also benefit 

from undertaking extended training stints at altitude with durations of 21-28 days at 2000-

3000m reported (J. Daniels and Oldridge, 1970; Chapman et al., 2016; Sharma et al., 

2017), however lower altitudes (1600-1800m) may also be effective in improving 

performance through adaptations mediated by other factors as opposed to haematological 

adaptations to altitude (Sharma et al., 2019). The author’s experience supports this, having 

spent 35 days at 1500-2300m, and demonstrating improvements in body composition and 

5km performance (unpublished observations).  

It is worth noting that whilst altitude clearly limits performance, and the use of altitude to 

improve performance may be contested in elite athletes (G. P. Millet et al., 2016; Lundby 

and Robach, 2016) if a sufficiently potent and thoughtfully monitored altitude stimulus is 

applied to a supreme athlete, incredible performances are possible, as detailed in Millet’s 
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case study of Kilian Jornet, who produced the fastest rate of vertical climbing up to 8000m 

(350m/h; 6400m to 8000m) and scaled Mt. Everest twice within one week (G. P. Millet 

and Jornet, 2019). 

 

2.2.3.2 Cold 

Exposure to cold induces physiological, morphological and behavioural changes in an 

individual (Makinen, 2010); these changes depend on the length of cold exposure, the 

nature (air or water; single or repeated) and the severity of the cold stimulus being applied, 

if improperly managed these factors may produce cold injuries (Steine et al., 2003; Guly, 

2012). From an endurance perspective, cold presents a homeostatic challenge as the rate 

of heat loss may exceed heat storage during exercise in a sufficiently cold environment, 

presenting an energetically expensive conflict to the athlete, who must maintain a 

sufficient Tcore whilst expending energy to perform. Upon initial cold exposure, one can 

expect a hypothermic response. Typically, this will involve a reduction in temperature at 

the core and periphery driven by vasoconstriction and a reduction in metabolic heat 

production (Tipton et al., 2013; Brazaitis et al., 2014; Daanen and van Marken Lichtenbelt, 

2016; O. R. Gibson et al., 2017; J.-Y. Lee, Park and Kim, 2017; K. Gordon et al., 2019), 

which may be countered by an increase in shivering thermogenesis (Makinen, 2010), with 

non-shivering thermogenesis and rates of lipolysis (K. Gordon et al., 2019) elevated and 

respiratory exchange ratio reduced (Muller et al., 2012) following chronic cold 

exposure(s).  

Shivering and thermal sensation may show signs of habituation following the first 

exposure to the cold (Budd, 1989; Makinen, 2010; Brazaitis et al., 2014; Daanen and van 

Marken Lichtenbelt, 2016), and may display localised adaptation that facilitate 

performance of musculature in the cold (J.-Y. Lee, Park and Kim, 2017). Subjective 

adaptations may alter behavioural thermoregulation strategies. This presents a double-

edged sword of sorts: for athletes competing at high metabolic intensities an improvement 

in thermal sensation and reduction behavioural thermoregulation may improve 

performance through permitting a greater rate of metabolic heat production during exercise 

whilst concomitantly limiting distractions related to cold sensation, whereas for an athlete 

that is exposed to either extreme cold and or must perform in a cold environment for an 

extended period e.g. a Polar explorer, such an adaptation may pose an increased risk of 

cold injury. 

The above evidence suggests that for endurance athletes, cold may be best combatted 

behaviourally, by wearing additional clothing such as hats, gloves and arm warmers, 
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hereby reducing the need for targeted acclimation strategies but highlighting the 

importance of combatting cold so as to mitigate its effects upon performance.  

 

2.2.3.3 Heat 

Heat as a driver of fatigue, and the resultant physiological, metabolic and perceptual 

effects are discussed in Section 2.4. Simply, heat poses a multi-systems threat to the body 

during endurance exercise; these effects are exacerbated by increasing exercise duration 

or intensity but can be mitigated by targeted physiological or perceptual cooling strategies. 

Longer term adaptations that better equip an athlete to tolerate exercise performance in the 

heat are known as heat acclimation or acclimatisation strategies. Acclimation takes place 

in artificial indoor environments, whereas acclimatisation takes place in situ under hot 

natural conditions (Racinais et al., 2015).  

Acclimation strategies typically consist of repeated exposure to an artificial hot 

environment with recommended daily session durations of 30-60 min, for a period of two 

weeks (Racinais et al., 2015). This duration of acclimation will result in adaptations in a 

full complement of physiological and subjective variables (Périard, Racinais and Sawka, 

2015), these are discussed in subsequent sections (2.4 and associated subsections), but is 

important to note that these variables display differing time courses of adaptation, typically 

ranging from seven to fourteen days (Périard, Racinais and Sawka, 2015), commencing 

on the first day of heat exposure and demonstrating 75 – 80% of change within the first 7 

days (Shapiro, Moran and Y. Epstein, 1998; Pandolf, 1998).  

A recent paper (Willmott et al., 2016), investigated two short term heat acclimation 

protocols (four days; 35ºC and 60% relative humidity) and assessed the differences in 

performance resulting from either twice daily or daily heat exposure upon 3km time trial 

performance (2km at 40% V̇O2max + 3km maximal effort). Neither group differed 

statistically when compared to control (p = 0.35; -6 ± 44 s or +0.6%), yet the differences 

were on average practically meaningful (twice daily: - 36 ± 34 s or +3.5%; once daily: -

26 ± 28 s or +2.8%), but displayed wide standard deviations suggesting a variable response 

to either heat stress or training and possibly recovery from the initial performance test. 

This latter point is pertinent not only due to the short-term nature of the intervention, but 

the athletes in each group displayed only moderate maximal oxygen uptake values as 

categorised by De Pauw & Roelands (45.0 – 54.9 ml.kg-1.min-1 i.e. Performance Level 2; 

(De Pauw and Roelands, 2013)), effectively priming them for adaptation to the additional 

stimulus provided by heat. 
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The use of additional clothing during exercise may also present a short - moderate term 

heat acclimation option as it increases core temperature and sweat rate which are 

considered primary drivers of heat adaptation (Stevens, 2018; Willmott et al., 2018). 

Additional clothing would also reduce evaporative cooling and create a localised heat 

storage response; this is of greater concern to cyclists than runners due to faster training 

velocities, resultant wind speed and therefore potential rate of evaporative cooling 

(Shimazaki, Yoshida and Yamamoto, 2015). Post-exercise hot water immersion 

(Zurawlew et al., 2016; Zurawlew, Mee and Walsh, 2018) at 40ºC for ≤40 min after 

moderate intensity exercise has also been shown to induce thermoregulatory adaptations 

after as little as six days exposure. Immersion in hot water extends the time at an elevated 

core temperature following exercise, effectively lengthening and intensifying the thermal 

load placed upon an athlete following a session. It is unclear whether complete immersion 

is necessary to drive these adaptive processes, or if a partial immersion of the exercising 

musculature (e.g. legs only) would be sufficient to induce a localised response that is still 

ergogenic.   

 

2.2.3.4 Humidity 

Humidity is often paired with heat in exercise trials to produce a thermally challenging 

and uncomfortable environment, acts independently of (Maughan, Otani and Watson, 

2012; Junge et al., 2016) and concomitantly with temperature to produce thermoregulatory 

responses in athletes (Maughan, 2010). Humidity is a measure of the amount of moisture 

within the air (%) and thus affects and is reflective of the evaporative capacity of an athlete, 

potentially limiting the rate at which an athlete can dissipate heat though evaporative sweat 

losses (Gagnon, Jay and Kenny, 2013; Kenny and Jay, 2013; C. J. Smith and J. M. Johnson, 

2016). Humidity is limiting as an increase in humidity directly decreases the moisture 

concentration gradient between the skin and the environment (Maughan, 2010). If these 

two factors reach a point of equilibrium, sweat is retained upon the skin and local skin 

temperature (Tskin) increases rapidly, concomitantly increasing blood temperature, whilst 

lessening the body’s ability to cool itself, as an increase in blood temperature would 

manifest as an elevated Tcore. This decrease in concentration gradient between the core and 

the periphery may lead to fatigue in most instances, and can be a driver for heat related 

illness (American College of Sports Medicine et al., 2007). 
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2.2.3.5 Radiant heat 

Radiant heat, or solar radiation, is an often-neglected part of study protocols, but in 

ecologically valid settings is a contributory factor to a decline in endurance performance 

(R. R. Gonzalez et al., 2012; Otani et al., 2016; 2017; 2019), as the sun can contribute 

approximately 500W of further thermal load to an athlete’s already stressed system 

(Nielsen, Kassow and Aschengreen, 1988; Otani et al., 2016; 2017). Factors that may 

influence the radiant heat load placed upon an athlete include the time of day (Otani et al., 

2017) and associated angle of the sun (R. R. Gonzalez et al., 2012), clothing worn by 

participants and the activity being performed in them (Nielsen, 1990; Wheeler, 1991; M. 

R. Ely, Cheuvront and Montain, 2007; R. R. Gonzalez et al., 2012; Otani et al., 2016; 

2017; 2019). Depending upon the exercising surface, this could also be reflected or 

transmitted by the ground (Figure 2.1), incurring a further cost and potentially worsening 

endurance exercise performance.  

 

Figure 2-2 Schematic diagram showing sources of human heat production, transfer and loss 
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Table 2-1 IAAF Championship, Diamond League & World Challenge Fixtures with accompanying average temperatures for time of year 

Date Meeting Venue Country Average Temperature 

(°c) 

21 March 2015 IAAF Melbourne Wold 

Challenge 

Melbourne Australia 19 

02 May 2015 IAAF World Relay 

Championships 

Nassau Bahamas 26 

09 May 2015 Jamaica International 

Invitational 

Kingston Jamaica 28 

10 May 2015 Seiko Golden Grand Prix Kawasaki Japan 22 

15 May 2015 IAAF Diamond League Doha Qatar 39 

17 May 2015 IAAF Diamond League Shanghai China 25 

20 May 2015 2015 IAAF World 

Challenge Beijing 

Beijing China 27 

23 May 2015 IAAF World Challenge 

Dakar 

Dakar Senegal 26 

24 May 2015 AA Drink FBK-Games Hengelo Netherlands 19 

26 May 2015 54th Ostrava Golden Spike Ostrava Czech Republic 20 

29 – 30 May 2015 Prefontaine Classic Eugene United States of America 19 

04 June 2015 Golden Gala Pietro 

Mennea 

Rome Italy 29 

07 June 2015 Sainsbury’s Birmingham 

Grand Prix 

Birmingham United Kingdom 19 

11 June 2015 ExxonMobil Bislett 

Games 

Oslo Norway 20 

13 June 2015 IAAF Diamond League New York United States 27 

14 June 2015 Mohammed VI 

d’Athletisme 

Rabat Morocco 25 



 24 

04 July 2015 Meeting Areva Paris France 25 

09 July 2015 Athletissima Lausanne Switzerland 25 

11 July 2015 33rd Meeting Madrid 2015 Madrid Spain 33 

17 July 2015 Herculis Monaco Monaco 27 

24 – 25 July 2015 Sainsbury’s Anniversary 

Games 

London United Kingdom 23 

30 July 2015 Stockholm BAUHAUS 

Athletics 

Stockholm Sweden 22 

22 – 30 August 2015 IAAF World 

Championships 

Beijing China 31 

03 September 2015 Weltklasse Zurich Zurich Switzerland 20 

06 September 2015 ISTAF Berlin Berlin Germany 19 

08 September 2015 IAAF World Challenge 

Zagreb 

Zagreb Croatia 21 

11 September 2015 Memorial van Damme Brussels Belgium 19 

13 September 2015 Rieti Meeting 2015 Rieti Italy 25 

13 September 2015 Grande Premio Brasil 

Caixa Sao Paulo de 

Atletismo 

Sao Paulo Brazil 25 
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2.3 Models of fatigue; with particular reference to endurance performance 

Seminal writings at the genesis of physiological investigation and reflection sought to 

better understand and categorise fatigue. Brillat-Savarin in 1825 proposed three kinds of 

fatigue, notwithstanding hunger, namely muscular fatigue, mental labours and amorous 

excesses (Brillat-Savarin, 2009). The Italian physiologist Angelo Mosso, who has been 

credited as the first to purposefully investigate fatigue (Meeusen et al., 2006; Enoka and 

Duchateau, 2008; Marino, Gard and Drinkwater, 2009; Maughan, 2010; McMorris, 

Barwood and Corbett, 2018), writes later ‘The first is a diminution of the muscular force. 

The second is fatigue as a sensation. That is to say, we have a physical fact which can be 

measured and compared, and a psychic fact which eludes measurement.’ (Mosso, 2017). 

Both Brillat-Savarin and Mosso acknowledge the potential for physiological and 

psychological sources of fatigue, and their coming together to affect the individual by a 

reduction in or cessation of the action(s) which have led to the fatigued state. Exercise and 

associated scientists have since sought to further identify and investigate mechanisms 

responsible for fatigue, and provide an explanatory model of fatigue. Typically, models 

are confined to a single professional lens, possibly due to confirmation or conservatism 

biases, or salience (Robergs, 2017). These can be divided simply into models that exist 

‘above the neck’ i.e. central and psychological models and ‘below the neck’ i.e. at the level 

of muscle, organs and the periphery. There are also integrated models, that encompass 

psychological and physiological determinants. The discussion of these models will focus 

on work conducted in or relevant to endurance sports. 

  

2.3.1 Above the neck 

Fatigue may be considered to occur ‘above the neck’ if there is neurological input or 

interpretation that results in the cessation of exercise. This does not always occur at a 

conscious level and may be enhanced with training or impaired with prior cognitive work 

(Marcora, Staiano and Manning, 2009). Biologically, above the neck fatigue is central in 

nature and involves the brain, brain stem and spinal column but does not project into 

circulation or working musculature. Psychological explanations of (central) fatigue are 

also mentioned. 

 

2.3.1.1 The Central Governor 

The Central Governor theory was first proposed by Timothy Noakes’ laboratory in the 

early 2000’s as part of a series of papers (Gibson and Noakes, 2004; Noakes and Gibson, 

2004; Noakes, Gibson and Lambert, 2005; Lambert, Gibson and Noakes, 2005). These 
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papers argue that traditional models of fatigue emphasise fatigue as a peripheral 

phenomenon ( Gibson and Noakes, 2004) that is an example of a linear progression until 

a point of catastrophic failure, deemed the cardiovascular, anaerobic, catastrophe model 

in some works (Noakes and Gibson, 2004; Weir, 2006). This critique of a peripheral 

approach to fatigue is extended by suggesting that peripheral approaches are reductionist, 

teleological and are essentially a product of a researcher’s professional lens e.g. a 

physiologist may attribute fatigue to a discrete variable such as diminished ATP, or 

increased blood lactate concentrations because that is what they are trained to measure 

(Lambert, Gibson and Noakes, 2005).  

In contrast, Noakes and colleagues suggest that through a form of ‘black box thinking’ in 

which neural signals from the periphery are integrated and fed back to the brain and fed 

forward to the muscles in an oscillatory fashion (Gibson and Noakes, 2004; Lambert, 

Gibson and Noakes, 2005), suggesting that fatigue is therefore a sensory factor as opposed 

to being attributable solely to peripheral factors. The Central Governor is theorised to 

mediate these competing signals in a non-linear and deterministic fashion which ultimately 

expresses as fatigue, unlike a peripheral model, whereby fatigue is defined by a linear or 

exponential accumulation or diminution of a metabolite, and so is a correlate as opposed 

to a cause or conclusion of exercise performance. 

More recently the Central Governor extended its reaches to a much wider range of 

variables, effectively suggesting that any variable can influence exercise performance and 

thus fatigue (Noakes, 2012; Inzlicht and Marcora, 2016). Athletic performance per the 

Central Governor model is a (sub)conscious expression of how an athlete copes with and 

interprets a plethora of factors, informed and managed via feedforward and feedback 

mechanisms, as such fatigue is illusionary, and a subconscious decision with respect to 

exercise performance (Noakes, 2012). This notion has been previously challenged by Weir 

(2006) who rightly points out that despite suggesting fatigue is an emotion or sensation, in 

studies designed to assess the Central Governor the same variables are assessed as in other 

exercise trials and so may be flawed in their design and interpretation. A more pressing 

issue is that raised by Inzlicht & Marcora (2016) that under its current guise the Central 

Governor is not falsifiable. Originally Noakes and colleagues (Noakes, Gibson and 

Lambert, 2005) suggested that the governor regulated at a subconscious level and couldn’t 

be overridden due to the impending threat upon homeostasis. In light of recent evidence 

to suggest that exercise performance can indeed be overridden consciously (McCormick, 

Meijen and Marcora, 2015), the model was simply updated (Inzlicht and Marcora, 2016) 

and so became unfalsifiable. To conclude, the Central Governor presents an intuitive and 
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attractive explanation for fatigue, but as a model it is deeply flawed due to its inability to 

be falsified, variables of choice at the point of assessment and general approach as a 

theoretical panacea in the absence of accompanying biology. An advance on the Central 

Governor may be an interoceptive approach to fatigue, which employs known regions of 

the brain to proffer an explanation – this is outlined in section 2.3.3.2, having first explored 

other above and below the neck models of fatigue.  

 

2.3.1.2 Motivational Intensity and the Psychobiological Model of fatigue 

Motivational Intensity theory (Brehm and Self, 1989) is regarded as the predecessor to the 

psychobiological model of exercise tolerance (Marcora, 2008; 2009); Brehm and Self 

(1989) characterise motivational intensity as the effort one is willing to expend in pursuit 

of a motive, and the time over which this effort is distributed. The psychobiological model 

of fatigue builds upon this by suggesting that fatigue attributed to maximal exercise is the 

result of task disengagement i.e. the participant is no longer sufficiently motivated to 

complete the task, and time to exhaustion or performance is the result of how an athlete’s 

motivation has been distributed over task duration (Marcora, 2008; 2009; Marcora and 

Staiano, 2010).  

Marcora’s argument for this is often that maximal ratings of perceived exertion are 

recorded upon task completion, and this value scales with task duration (Marcora and 

Staiano, 2010). These findings are somewhat supported by the fact that mental fatigue can 

increase the rate at which RPE accumulates throughout a task, but no differences are 

reported at exhaustion (Marcora, Staiano and Manning, 2009), with no differences in 

success (p<0.524) and intrinsic (p<0.126) motivation between groups observed neither pre 

nor post-trial. This is counterintuitive as reductions in motivation would at least be 

expected at the pre-trial measurement, if mental fatigue indeed impaired exercise 

performance via the mechanism proposed by the psychobiological model.  

The authors do note though that this may have been a self-inflicted null finding, due to the 

offering of a monetary reward for the best cycling performance (Boksem, Meijman and 

Lorist, 2006; Marcora, Staiano and Manning, 2009); thus the limitation should also be 

taken into account in their subsequent work (Marcora and Staiano, 2010) which employed 

a systematic approach to falsifying their hypothesis by assessing maximal power output at 

25% intervals of a previously established TTE, and noted a reduction in maximal power 

output as percentage of TTE increased despite required power output remaining 

unchanged. Motivation was not measured in this experiment so the reduction in maximal 

power output cannot be attributed to a reduction in motivation in this instance.  
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Motivation has however been shown to interact with other self-report psychological 

measures and influence ultra-endurance running performance (Best, Barwick, et al., 2018) 

and may also present as a possible explanation for the ‘end-spurt phenomenon’ often seen 

in the latter stages of endurance events (Pageaux, 2014; K. Thomas et al., 2015), especially 

in instances of head to head competition (Corbett et al., 2012) although this explanation 

may require further qualitative support by athletes for confirmation.  

Despite documented disagreements within the literature (Noakes and Tucker, 2008; 

Marcora, 2008; Inzlicht and Marcora, 2016), the psychobiological model and the central 

governor are similar in nature. Both place importance upon subconscious sensory 

information and its role within the generation of a conscious rating of perceived exertion, 

and subsequent conscious interpretation (Marcora, 2008; Noakes and Tucker, 2008). 

Where the models differ is the time point at which their explanation for fatigue is most 

valid and how they apportion ‘blame’ upon the athlete.  

The central governor model proposes that exercise performance is regulated in a 

feedforward mechanism and so explains exercise end-point, from the onset of exercise. 

Whereas the psychobiological model considers fatigue a mismatch between motivational 

intensity and task demand and as such emphasises exercise end-point immediately prior 

to exercise termination. Whilst these are important theoretical differences, evidence that 

exercise end-point can be extended through strategies such as deception, experimenter sex, 

external reward and verbal encouragement (Richter and Gendolla, 2009; Lamarche, 

Gammage and Gabriel, 2011; Castle et al., 2012; McCormick, Meijen and Marcora, 2015; 

D. N. Borg et al., 2018) suggest that the psychobiological model of fatigue proffers the 

better explanation of exercise termination. Noakes (2012) argues that athletes who lose 

races may do so as the result of a predetermined conscious decision, and fatigue is simply 

the symptom of this. However, evidence from head to head competitive studies positively 

counters this assertion (Corbett et al., 2012; 2017) as the presence of a competitor yields 

higher power outputs attributed to an increased anaerobic contribution (Corbett et al., 

2012) and impaired thermoregulatory behaviours (Corbett et al., 2017), possibly to 

athletes’ detriment. It is unlikely that such behaviours are premeditated, but are driven by 

an increase in motivation, accompanied by a knowledge of exercise end-point (Pageaux, 

2014). This is supported fourfold: firstly, by non-significant differences in other perceptual 

thermal measures between solo and head to head performances; secondly, the athletes 

accrued the most heat demonstrated the greatest improvement in time between head to 

head and self-paced conditions (Corbett et al., 2017). Thirdly, athletes performing in head 

to head conditions may negate an end-spurt but still perform faster overall due to sustaining 
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a higher exercise intensity throughout the effort (Corbett et al., 2012; Renfree and A. S. 

C. Gibson, 2013) and finally, central governor proponents present a version of the 

psychobiological model under the guise of ‘affective load’ and acknowledge the 

importance of motivation and its optimisation in relation to task completion and duration 

in a 2011 review (Baron et al., 2011). 

 

2.3.2 Below the neck 

Theories of fatigue that are considered ‘Below the neck’ attribute fatigue to systems that 

occur at the periphery. These systems are predominantly involved in the transport of 

energetic substrates or the conservation thereof, function at the level of the muscle 

contractile unit or thermoregulation. It is acknowledged that signals are fed-forward or 

fed-back to these systems from associated brain areas, however fatigue in these systems 

typically corresponds to a threshold or they may contain a local protective safety 

mechanism that can be attenuated or exacerbated, and as such are capable of fatiguing 

independent of brain input. 

 

2.3.2.1 AV Hill and VO2max, exercise economy and the lactate threshold 

The following section provides an overview of the cardiorespiratory limits to endurance 

exercise performance, commencing with the classic work of Nobel Laureate A.V. Hill, 

who first defined steady state exercise and maximal oxygen consumption (V̇O2max) and in 

doing so identified a linear relationship between oxygen consumption (V̇O2) and running 

speed (A. V. Hill and Lupton, 1923). To clarify, V̇O2max is the maximum volume of oxygen 

that one can take up and use to perform muscular work; this value does not increase despite 

an increase in oxygen demand, and is limited by cardiovascular and respiratory factors 

(Bassett and Howley, 1997; 2000), so a plateau in V̇O2 may be seen; secondary measures 

such as an RER>1.1 or an RPE of ≥18 (Abbiss et al., 2015) confirm attainment of V̇O2max. 

Maximal oxygen consumption can be expressed in absolute (L.min-1), or relative terms 

(ml.kg.min-1), and whilst certainly trainable, one’s genetics may influence V̇O2max baseline 

values and the trainability of one’s V̇O2max (Williams et al., 2017).  

The concept of a V̇O2 plateau was also proposed by Hill, if exercise intensity (oxygen 

requirement) progresses beyond the rate of oxygen consumption then one incurs an oxygen 

debt, however oxygen consumption plateaus as the circulatory and respiratory systems are 

performing maximally. The presence of a plateau is a point of contention within the 

literature (Noakes, 1998; 2008), but may not occur in some individuals due to an inability 

to sustain the intensity long enough for a plateau to occur (Hawkins et al., 2007) or that 
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the exercise intensity is such that V̇O2 is still climbing at the point of volitional exhaustion 

(D. W. Hill, Poole and J. Smith, 2002), and may also be attributed to data sampling and 

processing differences (e.g. breath by breath vs. 30 sec sampling (Myers et al., 1990; 

Bassett and Howley, 1997). 

Mechanistically, V̇O2max is the result of one or more cardiorespiratory variables reaching 

a point of limitation: 

The first possible limitation is at the point of delivery of oxygen to the red blood cell; 

arterial saturation of oxygen (SaO2) may be reduced at high work rates. Decreased SaO2 

may be caused by the high rate at which blood is shuttled through arterial capillaries, 

resulting in a lower percentage saturation; this is especially true in elite athletes, who 

possess a much higher cardiac output (Q̇) than untrained individuals (40L.min-1 v 25L.min-

1) and so this greater volume, moving at a higher velocity decreases the likelihood of SaO2 

prior to exiting pulmonary capillaries. This limitation is also apparent at altitude, where 

the partial pressure of oxygen is lower and so the forcing effect typically caused by 

increased alveolar-arterial difference of O2 is reduced, at the point of the alveoli. This 

results in a decreased SaO2 at altitude, and thus a decreased capacity for exercise and 

V̇O2max at altitude (J. Daniels and Oldridge, 1970; P. U. Saunders, Pyne and Gore, 2009; 

Brown and Grocott, 2013; Khodaee et al., 2016), and may serve as a predictor of acute 

mountain sickness (Castellani et al., 2010; Karinen et al., 2010). 

Prior to considering Q̇ and its constituent parts, heart rate (HR) and stroke volume (SV), 

the possible limitations at the red blood cell (RBC) are worth noting. Oxygen saturation 

may be limited at the point of the RBC by either the number of RBC, or RBC quality i.e. 

their binding capacity. Both factors limit the haemoglobin (Hb) capacity of the blood, Hb 

being the protein to which O2 binds on the RBC. The number of RBC may be increased 

naturally, through endurance training (Montero et al., 2015) or exposure to altitude 

(Khodaee et al., 2016; Płoszczyca, Langfort and Czuba, 2018), or artificially through 

blood doping practices (Brien and Simon, 1987), or the use of recombinant human 

erythropoietin (Caillaud et al., 2015; Nordsborg et al., 2015; Sgrò et al., 2018), both of 

which are banned in sport. Haemoglobin concentration may be limited by dietary, exercise 

associated or sickle anaemias, and by exposure to carbon monoxide and smoking 

(Malenica et al., 2017); carbon monoxide has a binding affinity to Hb 300 times that of O2 

and exposure leads to the formation of carboxyhaemoglobin, which renders the Hb 

molecule unable to carry O2 (Douglas, J. S. Haldane and J. B. Haldane, 1912). 

A linear relationship between V̇O2max and Q̇ was first observed by Lindhard in 1915, and 

supported by Hill and Lupton soon after in 1923 (Bassett and Howley, 2000). This is also 
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apparent in athletic animals, when compared to their non-athletic counterparts demonstrate 

a doubling of Q̇ and V̇O2max, despite comparable HRmax values (Poole and Erickson, 2011). 

Further support from SV as the primary factor of Q̇ that limits V̇O2max comes from studies 

of beta blockers which reduce HRmax and demonstrate a proportional decrease in Q̇ and 

V̇O2max and a preservation of SV.  

Further points of limitation to V̇O2max occur within the muscle and so are discussed in 

section 2.3.2.2 Muscle structure and function.   

As suggested above, V̇O2max is considered a determinant of exercise performance between 

fitness groups e.g. recreational to elite, but is not a strong predictor of performance within 

fitness groups e.g. elite to elite (J. Daniels and N. Daniels, 1992). Within fitness groups, 

exercise economy i.e. percentage of V̇O2max required to sustain a given running speed, or 

V̇O2 to complete a known distance (ml.kg-1.km-1) are considered better determinants. 

Absolute speeds coupled with V̇O2 are used to classify athletes (e.g. 14, 16 and 18km.h-1; 

(P. U. Saunders, Pyne, Telford and Hawley, 2004b; Barnes and Kilding, 2015) as 

recreational – elite, but velocity associated with sustaining a high fractional utilisation of 

V̇O2max may be a more appropriate individual measure. For example PR ran at ~91% 

V̇O2max during her marathon world record (A. M. Jones, 1998; 2006) and demonstrated a 

15% improvement in running economy over 11 years (A. M. Jones, 2006), setting the 

marathon world record too, emphasising that the relative importance of V̇O2max diminishes 

and exercise economy increases as event distance/duration increases, as the speed relative 

to vV̇O2max also decreases.  

A second case series, comparing elite Eritrean and Spanish runners (Lucia et al., 2006) 

emphasises the interaction of these variables, and the prevailing importance of running 

economy when V̇O2max is already high. The Spanish runners displayed greater absolute 

and relative V̇O2max values, however the Eritrean group were significantly more 

economical (i.e. lower V̇O2) at 17, 19 and 21km.h-1, as shown in Table 2.2 below. These 

paces were chosen as they represent typical training, fast training and racing (10-12km) 

velocities for these athletes. Anthropometric characteristics also differed significantly 

between groups, with Eritreans presenting with lower body mass indexes (BMI), maximal 

calf circumference and skinfolds than the Spaniards, but possessed greater shank lengths. 

Simply, Eritreans were lighter, leaner and had a smaller lower limb mass distributed over 

a greater area; all of which may impose mechanical advantages that reduce the oxygen 

cost of running. This was further evidenced by higher finishing positions and greater 

participation at the 2004 and 2005 World Cross Country Championships by the Eritrean 
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compared to the Spanish athlete(s). For further comprehensive reviews of running 

economy, the reader is directed to Saunders et al., (2004a) and Barnes and Kilding (2015). 

 

Table 2-2 Maximal Oxygen Uptake and Running Economy values for Elite Eritrean and Spanish runners, 

adapted from Lucia et al., (2006). Use of asterisk* denotes statistical significance (p<0.05); double 

asterisk** denotes p<0.01. All values are reported as relative oxygen uptakes (ml.kg-1.min-1) unless 

otherwise stated. 

 Eritrean Spanish 

V̇O2max (absolute; L.min-1) 4.2 ± 0.3 4.7 ± 0.4* 

V̇O2max (relative) 73.8 ± 5.6 77.8 ± 6.1* 

V̇O2 at 17km.h-1 52.5 ± 6.4 59.7 ± 3.1* 

V̇O2 at 19km.h-1 60.0 ± 4.9 68.6 ± 4.8** 

V̇O2 at 21km.h-1 65.9 ± 6.8 74.8 ± 5.0* 

 

As exercise duration increases to moderate durations (15 min – 2 h), and the intensity 

remains relatively close to running speeds that elicit V̇O2max i.e. a high % vV̇O2max, the 

muscle’s ability to tolerate and meet these demands aerobically (generation of ATP from 

lipds) is challenged. This leads to an increased contribution from glycolytic sources 

(endogenous or exogenous carbohydrate) and in turn elevates blood lactate values [La] 

and an increase in free H+ ions within the muscle (Joyner and Coyle, 2008; Hall et al., 

2016). Two phenomena ensue, the first is an accumulation of lactate above resting values, 

and the second an exponential accumulation brought about my maximal exercise 

intensities (Hall et al., 2016). The terms for these phenomena are inconsistent within the 

literature, but in a recent review Hall et al., (2016) recommend the terms aerobic lactate 

threshold and maximal lactate steady state (MLSS) respectively, but the anaerobic lactate 

threshold is also used. For consistency, aerobic and anaerobic lactate thresholds are the 

preferred terms within this thesis. Whilst there is now plentiful literature which employs 

the term MLSS, this is arguably a misnomer as attaining this intensity/velocity elicits a 

change within the muscle that is in part uncompensable, despite being modelled on a point 

of metabolic equivalency (Heck et al., 1985; Smekal et al., 2011). This is further 

complicated when one considers the rate of [La] appearance (RA) and rate of disappearance 

(RD) can be measured, so one may assume a further definition of the anaerobic lactate 

threshold is when RA > RD (Messonnier et al., 2013). This is supported by a rightward 

shift in a [La] curve during incremental exercise tests being associated with improved 

endurance exercise capacity (Midgley, McNaughton and Wilkinson, 2006; Ferguson et al., 
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2018). Values of 2mmol.L-1 and 4mmol.L-1 have also been used to describe aerobic and 

anaerobic lactate thresholds respectively (Fabre et al., 2013), although individualised 

models are to be encouraged, these values are typically used by coaches as benchmarks 

for associated exercise intensities (Hall et al., 2016). 

In summary, a high V̇O2max is requisite for elite endurance performance, with running 

economy a key differentiator of performance between those with similar V̇O2max values. 

The ability to meet the demands of competition with minimal [La] accumulation is 

advantageous, so a well-developed anaerobic lactate threshold is also deemed beneficial. 

Practically this enables an elite runner to sustain a high running velocity by consuming a 

lower volume of oxygen and lower circulating [La] in comparison to lesser or untrained 

counterparts who may fatigue earlier due to limitations in one or all of these components. 

This interrelationship has previously been defined as a formula for marathon performance 

by Joyner as: 

𝑉𝑂2𝑚𝑎𝑥
̇  𝑥 𝑙𝑎𝑐𝑡𝑎𝑡𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑥 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑒𝑐𝑜𝑛𝑜𝑚𝑦  

(Joyner, 1991) 

This interrelationship is event specific. Jones (2006) divides events into short-endurance 

(800-1500m), long-endurance (5000m, 10000m and marathon) and ultra-long endurance 

(ultra-marathons) categories. Each of these groups is likely limited by differing factors, as 

evidenced in two classic works (Costill, 1970; J. Daniels and N. Daniels, 1992), and Jones’ 

case studies of PR (Jones 1998; 2006). Daniels and Daniels (1992) noted high V̇O2max 

values in all athletes tested, irrespective of gender or competitive distance however both 

genders reported the highest values for those events which lasted the same duration as 

typical step or ramp protocols used to elicit V̇O2max and whose intensities most closely 

mirror vV̇O2max (Table 3), namely the 3000m – 10000m runners. Costill (1970) 

demonstrated a clear inverse curvilinear relationship between event distance/duration and 

[La] values in athletes covering short endurance – ultra-long endurance (Jones, 2006), 

which is attributed to the event’s %V̇O2max requirement and increased aerobic contribution 

as distance increases (D. W. Hill, 1999; Spencer and Gastin, 2001; Duffield, Dawson and 

Goodman, 2005; 2007). Finally, Jones case studies provide a unique longitudinal 

assessment of this interrelationship, as training accumulates, physiology adapts and the 

manifestation of this was numerous accolades culminating in a marathon world record (A. 

M. Jones, 1998; 2006). 
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Table 2-3 VO2max values of elite distance runners, adapted from Daniels and Daniels (1992). All values 

are relative to bodyweight (ml.kg-1.min-1) 

Group Male Female 

800m – 1500m 72.5 63.1 

3000m – 10000m 77.4 68.4 

Marathon 74.4 68.1 

 

2.3.2.2 Structure and function 

The previous section extended upon earlier discussion regarding respiratory and metabolic 

factors that may impact upon and limit endurance exercise performance. This section will 

focus upon the phenotypic factors that may be advantageous towards endurance exercise 

performance, or may manifest because of life-long endurance training. The absence of 

these factors does not necessarily accelerate fatigue, however athletes that display these 

characteristics may be better protected against fatigue. From an evolutionary perspective, 

many Homo sapiens will display the traits discussed in this section but some display a 

more extreme phenotype relative to the population. 

Anthropometrically humans display a range of adaptations that are beneficial in countering 

fatigue. A recent comprehensive investigation of factors associated with running economy 

demonstrated that having examined a plethora of anthropometrical, biochemical, 

biomechanical and physiological variables only bodyweight was associated with 

improvements in running economy, and explained 94% of the variance in running 

economy observed (Lundby et al., 2017). No variables were correlated to cycling economy 

following multiple regression (Lundby et al., 2017). This highlights the complexity of 

endurance performance and the variability between individuals’ characteristics that 

produce performance but the rigour of the statistical approach may have limited the 

authors’ findings, as only variables that were linearly related to performance were included 

in the multiple regression model (Lundby et al., 2017). This investigation also assessed a 

wide range of participants with respect to V̇O2max (45.5 – 72.1 ml.kg.min-1), whilst this is 

commendable, given an appropriate sample size, such a heterogeneous sample with respect 

to aerobic fitness is likely to produce clusters of data, as what limits an individual with a 

V̇O2max of 45.5 ml.kg.min-1 will differ from those recording 72.1 ml.kg.min-1.  

Anthropometrically, humans that are better suited to endurance running display common 

morphological traits such as a relatively smaller than average stature (males), high degree 

of linearity and a high body surface area to mass ratio (cm2/kg; (Lundby et al., 2017)). 

Thermoregulatory advantages may also be conferred and are supported further in humans 
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by possessing less body hair than other primates (Jablonski, 2004), possessing an increased 

rate of evaporative cooling (Wheeler, 1991) and minimising solar radiation exposure 

through bipedalism (Wheeler, 1991). Conversely, humans are the fattest of all ape species 

(Navarrete, van Schaik and Isler, 2011; Zihlman and Bolter, 2015), but this adiposity 

provides an energy dense fuel depot. These factors are thought to be evolved in part 

through our species’ pursuit of persistence hunting (Bramble and Lieberman, 2004), and 

as such economic locomotion, fuel availability and thermoregulation were necessary traits 

for survival. An economical athlete’s mass is also distributed closer to the centre of gravity, 

ensuring a lighter distal mass and decreasing the moment arm through the swing phase of 

a runner’s gait (P. U. Saunders, Pyne, Telford and Hawley, 2004a; Barnes and Kilding, 

2015). 

There are further biomechanical variables that support economical locomotion in human 

endurance athletes, these factors are not reviewed exhaustively here, so the reader is 

directed to pertinent reviews by Saunders (P.U. Saunders et al., 2004a), Barnes & Kilding 

(2015), Moore (2016) and Bramble & Lieberman (2004). 

Working from the ground upwards, in the plantar fascia and Achilles tendon, runners are 

supported by structures that are capable of rapidly storing and transmitting energy. 

Weisinger and colleagues demonstrated structural and energetic property differences 

between patellar and Achilles tendons in runners and controls (Wiesinger et al., 2017). 

Moderate differences (η2: 0.17) were seen in the Achilles between groups with runners 

(4340 ± 822N) demonstrating 11% greater force production than controls (3900 ± 690), 

and a 30% reduction in hysteresis (11.8 ± 3.1% vs. 17.3 ± 5.1%; η2: 0.25), suggesting a 

higher energy storage capacity of tendons in runners compared to controls, that is adaptive 

and acquired in response to longitudinal training.  

Progressing to the knee and associated musculature, Verheul (Verheul, Clansey and Lake, 

2017)found similar mechanical differences between training statuses within low and high 

mileage runners as Wiesinger did between runners and controls (Wiesinger et al., 2017). 

High mileage runners (>45km.week-1; mean volume: 68 ± 17 km.week-1) when compared 

to low mileage runners (<15km.week-1; mean volume 12 ± 3 km.week-1) displayed 

decreased muscular activation at the rectus femoris, semitendinosus and vastus medialis 

(p< 0.001) activity than low mileage runners. The low mileage runners also displayed a 

44% greater muscle co-activation ratio at the fastest running speed (5.5m.s-1). The groups 

displayed different kinematic and kinetic landing characteristics among all three landing 

phases (p<0.001). High mileage runners possessed greater knee flexion at higher running 

speeds (4.5 and 5.5m.s-1), decreased stance time and knee range of motion at lower running 
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speeds (2.5 and 3.5m.s-1) , greater knee stiffness at initial contact and lower knee stiffness 

at weight acceptance across all velocities, and performed less negative work and more 

elastic work (all p<0.05) at the ankle across all velocities than low mileage runners. These 

findings emphasise that training volume is a key determinant of the kinematic and 

neuromuscular properties of runners, and these adaptations likely contribute to faster 

running speeds. More simply, high mileage runners preload pertinent muscles through 

anticipatory neuromuscular activation; this results in greater joint stiffness and elastic 

energy return when the foot is in contact with the ground, with greater differences between 

training statuses as velocity increases (Moore, 2016; Verheul, Clansey and Lake, 2017). 

This work is extended by Tam and colleagues, who assessed similar characteristics and 

found that the same pattern of neuromuscular activation described above (lower ankle and 

greater knee stiffness) was associated with a lower oxygen consumption (R=0.527 and 

0.384, respectively (Tam et al., 2019)). 

These differences are not reported when one examines differences between elite 

populations (Eritrean vs. Spanish), despite differences in V̇O2max and running economy 

(Lucia et al., 2006; Santos-Concejero et al., 2015) these differences are not explained by 

biomechanical parameters, and may only be partially explained by phenotypic adaptations 

e.g. smaller calf circumference (R=0.554; R2= 0.307; (Lucia et al., 2006)). This is further 

supported by Tam et al., (2016) who only associated improved running economy with 

rectus femoris – biceps femoris coactivation at 20km.h-1 in elite Kenyan athletes, despite 

positive associations with knee stiffness during pre-activation and ground contact (Tam et 

al., 2016). 

Finally at the hip and gluteal region, utilising a computer modelling approach having 

obtained data from nine trained runners, Dorn and colleagues demonstrate that stride 

length is primarily driven by activation of ankle plantarflexors up to avelocity of ~7m.s-1, 

whereas stride frequency can be attributed to increased activation of the posterior 

musculature (gluteus maximus and hamstrings) and musculature that crosses the hip 

(iliopsoas, gluteus maximus and hamstrings) are attributed to increase hip and knee 

accelerations at higher running speeds (Dorn, Schache and Pandy, 2012). The authors note 

that these activation patterns only occur during steady state running and may not translate 

to accelerations (Dorn, Schache and Pandy, 2012); whilst this is not always a factor in 

distance running, movements that mimic the increased metabolic cost of acceleration such 

as ascending or descending may alter the observed movement patterns and underpinning 

neuromuscular activation, with minimising vertical oscillation (at higher running speeds) 

also encouraged (Moore, 2016) 



 37 

To conclude, the data presented above are interpreted from the perspective that humans 

have evolved to be ‘good’ distance runners relative to other members of the animal 

kingdom; this is the central tenet of the endurance running hypothesis (Carrier, 1984; 

Bramble and Lieberman, 2004) and must be borne in mind when examining factors that 

limit endurance running performance because what we consider desirable characteristics 

for sporting performance, more than likely served an evolutionary and genetic advantage, 

historically.  

 

2.3.2.3 Critical core temperature 

Humans, along with nearly all mammals and birds, are homeotherms (C. J. Gordon, 2012) 

and thus the maintenance of core temperature (Tcore) within a narrow range, above that of 

the local environment, is considered vital for homeostatic purposes. Exercise in hot 

conditions causes an elevated rate in the rise of Tcore and therefore an increase in heat 

storage that can become deleterious, and may induce heat related illness such as heat 

stroke, or hyperthermia (define). Contention exists within the literature as to whether a 

critical core temperature exists, what critical core temperature may be and that the 

attainment of this temperature is responsible for fatigue. Consideration of the 

heterogeneity of core temperature at rest provides initial insight into the inherent 

variability of human temperature and helps to contextualise the notion of a critical core 

temperature at the point of exercise cessation/termination. 

A recent epidemiological study has contested a common baseline temperature for humans 

(Obermeyer, Samra and Mullainathan, 2017), which has stood at 37ºC since Carl 

Wunderlich’s seminal work, published in 1868 and consisting of a sample of 25000 

individuals (Mackowiak and Morgan, 2017). It is argued that due to the relative enormity 

of this dataset Wunderlich’s conclusion was not challenged, yet 37ºC is neither the mean 

daily temperature, mean temperature at any point, nor the most recorded temperature 

within individuals (Mackowiak, S. S. Wasserman and M. M. Levine, 1992; Mackowiak 

and Morgan, 2017). Individual variation in Tcore may be attributed to a range of factors 

such as age, biological sex, ethnicity and menstrual cycle stage (K. A. Lee, 1988; Sund-

Levander, Forsberg and Wahren, 2002; Kelly, 2006; Waterhouse et al., 2009; Racinais et 

al., 2019), but these factors may only explain a small percentage of the variance in Tcore 

(Obermeyer, Samra and Mullainathan, 2017) and are further susceptible to diurnal 

variation (Mackowiak, S. S. Wasserman and M. M. Levine, 1992; Waterhouse et al., 

2009). This diurnal variation has obvious implications for exercise performance, 

especially if a critical Tcore exists, as the temperature one commences exercise at may be 
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higher or lower and thus the permitted change (∆Tcore) relative to the critical threshold may 

be diminished or increased.  

Evidence for a critical mammalian Tcore originates from a rodent study which demonstrated 

a commonality in the abdominal and brain temperatures (~40ºC) attained by exercising 

rats at the point of fatigue (Fuller, Carter and Mitchell, 1998) despite the implementation 

of different precooling strategies. In humans, similar observations were seen by Cheung 

(Cheung and McLellan, 1998), González-Alonso (González Alonso et al., 1999), Nielsen 

(Nielsen et al., 1993; 1997) and Nybo (Nybo & Nielsen, 2001) who report fatigue as 

aligning with temperatures approaching 40ºC. However, these studies all took place in 

laboratory conditions that maximise the rate of heat storage of an individual by minimising 

evaporative cooling (either by no wind speed or increased humidity) and exercising at a 

fixed intensity (Noakes, 2007). This does not mean they should be completely discredited 

but their conclusions may not be ecologically valid. Indeed, Byrne and colleagues (2006) 

assessed a mass participation half marathon (21.1km) race and noted variation in 

maximum Tcore attained during exercise, with an upper measure of 41.7ºC and a range of 

39.3-41.7ºC (Byrne et al., 2006). They clarify by stating that all runners attained Tcore 

>39ºC, 56% >40ºC and 11% >41ºC, clearly indicating that the attainment of an arbitrary 

critical core temperature is either non-catastrophic, or most likely individual in nature, 

much like the evidence presented earlier on resting temperature (Obermeyer, Samra and 

Mullainathan, 2017). Similar maintenance of performance despite elevated core 

temperatures >40ºC are seen in a simple proof of principle investigation by Ely et al., 

(2009) who compared the running velocity over the final 600m of 17 athletes (10male; 7 

female) participating in an 8km run. The group was divided in two, those with Tcore >40ºC 

and those with Tcore<40ºC, and no significant difference in mean running velocity was 

found (279 ± 28m/min vs. 282 ± 27m/min respectively; p<0.16 (Ely et al., 2009)). Whilst 

a running speed of 3m/min may be considered a practically meaningful difference, this is 

within the 1.5% coefficient of variation expected of trained distance runners’ performance 

over distances shorter than a half marathon (Hopkins and Hewson, 2001), and so instead 

may be construed as typical of race to race variation. 

Evidence countering the critical Tcore concept has most recently been supported by 

Racinais during the UCI World Cycling Championships (Racinais et al., 2019) in which 

10 of 40 riders attained temperatures >40ºC, and two cyclists exceeded 41ºC. The authors 

also note that the rate of temperature accumulation and maximum temperature attained are 

event specific; road races produce lower peak temperatures than team and individual time 

trials, irrespective of sex, most likely due to differences in exercise intensity and pacing 
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profiles between events. It is noted that in the road race, as power increased in the final 

section of the race, Tcore transiently reduced, with an increase in convective and 

evaporative cooling due to faster cycling speeds (Racinais et al., 2019). 

For the purpose of this thesis, the concept of a critical Tcore is considered as highly 

individual with respect to a maximum value and displaying intra-individual variation 

based upon prior heat exposure, training status and the use and nature of cooling 

methodologies. The rate of heat accumulation, and the Tcore:Tskin gradient may be more 

potent drivers of fatigue than the attainment of an arbitrary cut off point, evidence for these 

factors are presented in subsections 2.4.1.2 and 2.4.1.3, and it is likely the integration of 

these physiological markers that manifest in an athlete’s being too hot to continue 

exercising.  

 

2.3.3 Integrated approaches to fatigue 

Fatigue may be described as a non-homeostatic event across one or more biological 

systems. Integrated approaches to fatigue present explanations for fatigue by 

acknowledging that one system is not solely attributable for the onset of fatigue, but that 

fatigue can be attributed to deviation from homeostasis across a range of hierarchical 

biological systems at any one time. The following sections explore integrated models of 

fatigue with respect to sport and exercise performance, with Section 2.3 concluding by 

using ultra-endurance running as an example of integrated approaches to fatigue in action. 

 

2.3.3.1 Rating of Perceived Exertion: Gestalt and Differential perspectives 

The investigation of rating of perceived exertion (RPE) is most credited to the Swedish 

psychologist Borg. Borg has presented scales of perceived exertion (G. Borg, 1998; E. 

Borg and G. Borg, 2002; E. Borg et al., 2009) which aim to capture the degree of strain 

caused by task completion across all systems (physiological or otherwise) involved in 

producing the performance in question. Despite widespread use, mistakes in nomenclature 

are reportedly common, and administration may differ between laboratories (Abbiss et al., 

2015) but perhaps the most important misinterpretation is that which occurs when 

describing perceived effort and perceived exertion. Hutchinson and Tenenbaum (2006) 

differentiate between these factors by stating that perceived effort is the perception of work 

exerted by the exercising participant to complete the task, whereas perceived exertion is 

the sensation(s) elicited by and at the time of performing the task (Hutchinson and 

Tenenbaum, 2006). Abbiss (2015) presents this more succinctly, effort is ‘the amount of 
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physical or mental energy being given to a task’, whereas exertion is the ‘degree of 

heaviness and strain experienced in physical work’ (G. Borg, 1998; Abbiss et al., 2015). 

The presented definitions of exertion align with the idea of interoception detailed below 

in section 2.3.3.2, however, despite its ubiquity in sport and exercise science, Borg’s 

concept of perceived exertion as a singular parameter that encompasses the exertion 

experienced during exercise has been meaningfully critiqued. Opting for a single measure 

of exertion makes little sense, when one considers the complex interplay of neurology, 

physiology and psychology that interact with higher order processing to answer the 

question ‘How did that feel?’ upon exercise termination. 

Hutchinson and Tenenbaum (2006) put forth an experimental critique of Borg’s model 

with the aim of ascertaining whether RPE can be considered a gestalt measure, or whether 

it is best assessed via a differential approach. The authors tested two groups of participants’ 

performances on two sustained exercise tasks involving different muscle groups and 

assessed their perceptual responses across three dimensions of effort: sensory-

discriminative, motivational-affective, and cognitive-evaluative. It was hypothesised that 

participants would experience these dimensions differently, and this was supported as 

dimensions displayed differing magnitude and time responses during each exercise bout 

(Hutchinson and Tenenbaum, 2006), similar to earlier findings by the same group 

(Tenenbaum et al., 1999). Whilst these studies have grouped sensations into dimensions, 

where possible it may be prudent to capture sensations at the level of individual afferent 

sensory inputs, as these are interpreted by differing regions of the brain before further 

processing (A. D. Craig, 2002; 2009), for instance Tenenbaum et al., (1999) originally 

investigated responses to running performance across eight sensory factors: proprioceptive 

symptoms, leg symptoms, respiratory difficulties, disorientation, dryness and heat, task 

completion thoughts, mental toughness, and head or stomach symptoms. Upon closer 

inspection, these factors are often assessed simultaneously and independently during 

sports science research but the method of assessment differs dependent upon the factor in 

question, potentially presenting researchers with an apparent tautology between a 

differential and integrated approach to assessing ratings of perceived exertion. 

An example of this may be respiratory frequency (ƒR), which is strongly associated with 

RPE, and mirrors the work performed in a task more closely than commonly assessed 

variables such as HR, [La] and V̇O2 which display a lag following exercise onset and 

cessation (Nicolo:2014bt; Nicolò, Massaroni and Passfield, 2017). Furthermore, the 

mechanism that is thought to regulate ƒR is central in nature (Marcora, 2009) and so this 

variable may act as a physiological proxy for central RPE, if required e.g. in youth athletes 
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who may have difficulty in expressing RPE values, or may display higher differential RPE 

values at the same physiological threshold (Mahon, Gay and Stolen, 1998) when compared 

to adults. This also highlights the importance of embedding RPE assessment into training 

environments, and using this data in a way that is meaningful to athletes. 

Longitudinal investigations of differential approaches to RPE have been completed in 

team sports (Weston et al., 2014; McLaren et al., 2018) with a view to further elucidate 

the contribution of differing sensory inputs in athletes’ internal load (Weston et al., 2014; 

Arcos et al., 2016; McLaren et al., 2018). When paired with measures of external load, 

such as those obtained by global positioning systems, these data present a detailed 

quantification of the stresses experienced (and interpreted) by an athlete over a given 

duration (McLaren et al., 2016). Additionally, differential RPE data may support wider 

interventions with strong physiological bases; Arcos and colleagues state that soccer 

players who played fewer than 45min presented with increased respiratory ratings of 

exertion than those who played longer (Arcos et al., 2016). Mechanistically, this may be 

due to lower levels of muscle glycogen utilisation due to shorter playing time, and may 

inform post-match nutrition strategies, such as increasing dietary carbohydrate intake 

(Bangsbo, Mohr and Krustrup, 2006). 

These recent data are interesting from an endurance sports perspective as when assessed 

chronically they may provide an indication as to the time-course of how fitness is acquired 

and perceived by individuals, how this may differ between training statuses and how this 

may be influenced by dietary manipulations.  

 

2.3.3.2 Interoception: A Sense of Self 

The notion of interoception was honed in 2002 by AD ‘Bud’ Craig (A. D. Craig, 2002) 

building upon the earlier mid-century work of Sherrington who suggested that the sense 

could be codified into teloreceptive, proprioceptive, exteroceptive, chemoreceptive and 

interoceptive (Sherrington, 1906; A. D. Craig, 2002). Interoception by Sherrington’s 

definition was a sense of visceral occurrence/presence (A. D. Craig, 2002) however, 

Craig’s model sees interoception linked closely with a brain region (the anterior insula 

cortex) that is involved in the detection and interpretation of thermoregulation and other 

homeostatic processes that are pertinent to this thesis, such as dyspnoea, heartrate and 

thirst (A. D. Craig, 2009). 

Activation of the anterior insular cortex is underpinned by an elaborate neural network, 

consisting of both afferent and efferent networks. The breadth and magnitude of 

stimulation depends upon the stimulus one is exposed to; for instance, a stimulus that is 
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more arousing such as heartbeat awareness (Critchley et al., 2004), subjective cooling  (A. 

D. Craig et al., 2000) and heat pain (J. C. W. Brooks et al., 2002) stimulate the anterior 

insula cortex unilaterally, with more emotive stimuli presenting bilaterally (A. D. Craig, 

2009) and manifesting as sensations. 

These sensations, are thought to originate in the posterior insula cortex and progress 

anteriorly towards higher order centres of the brain. Neural inputs stimulate the posterior 

insula cortex and are compared to homeostatic norms which provide the template for 

stimuli assessment. As the signal progresses forwards to the mid-insular cortex, different 

brain regions ‘feed in’ depending upon the nature of the stimulus, enriching the signal(s) 

underpinning motor-functional, environmental and hedonic stimuli before these are 

affected at a motivational or cognitive level by the anterior insula cortex. In Craig’s 2009 

review, this posterior-anterior progression is depicted as a series of bodies, displayed in 

deepening hues as a colourful representation of more information being layered upon the 

initial signal/stimulus (A. D. Craig, 2009). These illustrations effectively depict the 

progression of the interoceptive ‘question’ from a homeostatic template of ‘How I should 

feel?’ in the posterior insular cortex to ‘How do I feel?’ in the anterior insular cortex. 

The interoceptive neural network may be ‘the black box’ the central governor theory has 

previously described (Ulmer, 1996; Lambert, Gibson and Noakes, 2005; McMorris, 

Barwood and Corbett, 2018), but advances the central governor theory in the following 

ways: Firstly, it provides an integrated neural network for the detection and maintenance 

of multiple physiological systems, and recognises this interconnectedness. Secondly, the 

biphasic approach of the interoceptive system from detection to interpretation as signals 

arrive from the periphery into the anterior and progress posteriorly, before moving to the 

somatosensory cortex (McMorris, Barwood and Corbett, 2018). Finally, it is falsifiable. 

Stimuli may be presented to an individual and the responses in this neural network 

measured, ensuring a scientifically stronger model, than the teleological approach 

presented by the central governor, seemingly ‘knowing’ everything and yet affected by 

everything (Noakes, 2012).  

However, in consciously presenting stimuli to an individual, we may fall victim to the 

‘neural spotlight effect’ (Müller and Kleinschmidt, 2007; Hassanpour et al., 2016). This 

term, used to describe the influence of the awareness of a preceding stimulus upon a 

subsequent target stimulus (Müller and Kleinschmidt, 2007), has particular relevance to 

fatigue in sport and exercise, as we can prime an athlete’s (thermoregulatory) system with 

a plethora of stimuli from the presence of competition (Corbett et al., 2017), to deception 

of thermoregulatory state (Castle et al., 2012; D. N. Borg et al., 2018) and absence of 
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nutrient availability (Che Muhamed et al., 2014). Indeed, such priming effects have been 

examined from an interoceptive neurological perspective with respect to emotional state 

(Paulus and Stein, 2010; Zaki, Davis and Ochsner, 2012; Grupe and Nitschke, 2013) and 

heartrate (Critchley et al., 2004; Pollatos et al., 2007), with accompanying preliminary 

(i.e. non-brain imaging) work assessing the relationship between ventilatory awareness 

and anxiety (Faull, Cox and Pattinson, 2016). 

A consciously interoceptive approach may be limited in terms of application to sport, 

however. There is a preponderance of literature assessing the effects of an external 

attentional focus on skill-dependent activities such as golf (Hüttermann, Memmert and 

Simons, 2014) and may also be beneficial in simpler tasks such as walking or running 

(Wulf, 2013). The benefits of adopting an external focus is that it shifts focus away from 

interoceptive systems and symptoms and allows the performer to focus solely on the 

process(es) required to produce a successful task outcome (Wulf, 2013; Hüttermann, 

Memmert and Simons, 2014). In this instance, interoception would still occur but would 

be a subconscious process as opposed to an active part of the cognition required to execute 

the task. Counterintuitively, data from fMRI (Critchley et al., 2004; Pollatos et al., 2007) 

and Transcranial Magnetic Stimulation (Kuhn et al., 2016) support that the insular cortex 

experiences increased activity when an external focus is adopted, suggesting that despite 

this process not being aware of interoceptive processes, the interoceptive neural network 

still generates, adjusts and responds to a template. 

Motivation also warrants consideration with respect to interoception and the resultant 

behavioural outcomes it generates. Hypothetically, if an athlete is highly motivated they 

may further challenge interoceptive feedback and systems, especially if rewards are high 

and core temperature is perceived not to be. This may have serious side effects, such as 

increasing the risk of heat death and inducing heat illness or, simply permit the athlete to 

win the race and recover normally. We may see these effects worsened in recreational 

athletes who likely do not possess the interoceptive and thermoregulatory abilities of elite 

athletes, but may be no less motivated due to economic or time investments into a task e.g. 

an ultra-marathon or multi-day event. In contrast, an increased motivation under greater 

interoceptive and or physiological stress may lead to the adoption of task pacing strategies 

(McMorris, Barwood and Corbett, 2018). 

 

2.3.3.3 Integrative model for hyperthermia induced fatigue 

A model of integrative hyperthermia induced fatigue was proposed by Nybo and 

colleagues (Nybo, Rasmussen and Sawka, 2014) in their comprehensive review of 
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physiological factors associated with hyperthermia induced fatigue. The model depicts 

how the combined influences of changes within cardiovascular, neurobiological, 

muscular, psychological and respiratory systems during performance in hyperthermic 

conditions, manifest in fatigue. The authors rightly acknowledge that literature tends to be 

orientated towards single parameters as potential explanations for fatigue and exhaustion, 

hence their proposal of a model that accounts for the interaction between multiple systems 

during exercise inducing fatigue. However, it is important to note that the dominant 

limiting system and relative importance of supporting systems may differ dependent upon 

exercise intensity, duration or mode (Nybo, Rasmussen and Sawka, 2014) and an athlete’s 

state of physiological (section 2.2.1) or psychological preparedness (section 2.2.2), as well 

as hyperthermia specific factors such as the heat transfer characteristics of the exercise 

task (as per Figure 2.2) and exercise environment (section 2.2.3). 

Nybo et al.,’s (2014) model provides an appropriate summary of the models of fatigue 

discussed in this chapter, acknowledging roles for psychological and physiological 

constituents of fatigue, whilst accepting that fatigue is most likely multifactorial in nature. 

Unfavourable environmental and heat transfer characteristics clearly accelerate the process 

of fatigue across most systems, inducing a hyperthermic state within the athlete; the extent 

and time course of which is dependent upon each system’s readiness, which will also differ 

between athletes of varying competitive abilities and specialties.  

 

2.3.3.4 Lessons from Ultra running 

Ultra-running serves to highlight that whilst fatigue may be multi-factorial and manifest 

in differing ways within and between individuals, fatigue is not solely peripheral; nor is it 

solely central, therefore, an integrated model should be favoured by practitioners and 

researchers. The interactive nature (Best, Barwick, et al., 2018) of contributory factors to 

fatigue during prolonged running suggest that fatigue in this context is not task but state 

dependent, in that an ultra-runner’s interpretation and manifestation of fatigue is 

represented across a spectrum of variables with differing time courses as running 

distance/duration increases (G. Y. Millet, 2011; G. Y. Millet, Banfi, et al., 2011; G. Y. 

Millet, Hoffman and Morin, 2012; G. P. Millet and G. Y. Millet, 2012; Lazzer et al., 2012; 

Kerhervé, G. Y. Millet and Solomon, 2015; Best, Barwick et al., 2018). This notion is 

explored, and subsequently applied through a return to standardised middle and long 

distance running events. 

This position is highlighted by several authors, across a range of study designs. Firstly, in 

a recent case study, assessing the between race variability of subjective metrics and 
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nutritional status, Best (Best, Barwick, et al., 2018) found that subjective variables interact 

and display differing time courses within an individual, potentially limiting performance 

by doing so. In this instance performance was enhanced to the degree of event completion 

when pain was mitigated; however, in the failed attempt pain rose substantially and 

independently of rating of perceived exertion, whilst presenting as inversely proportional 

to feelings of freshness and motivation (Best, Barwick, et al., 2018). 

Secondly, work by Guillaume Millet and Stefano Lazzer details the time course of fatigue 

in ultra-running across various event durations and technical difficulties (G. Y. Millet, 

2011; G. Y. Millet, Banfi, et al., 2011; G. Y. Millet, Hoffman and Morin, 2012; G. P. 

Millet and G. Y. Millet, 2012; Lazzer et al., 2012; Kerhervé, G. Y. Millet and Solomon, 

2015). These papers methodically outline the fatigability of (neuro-)musculature, 

corresponding physiological and concomitant subjective responses. Whilst highlighting 

the individualised and interconnected nature of fatigue these papers also serve as a useful 

reminder that fatigue ‘exists’ predominantly in the method used to assess it, whether this 

has a central emphasis or otherwise. Millet notes that despite ultra-running now being a 

predominantly recreational pursuit (G. Y. Millet, 2011) central, mechanical and structural 

robustness developed in response to prolonged running is likely responsible in part for 

shaping our predecessor, Homo erectus (Bramble and Lieberman, 2004; Lieberman and 

Bramble, 2007), and thus irrespective of its presentation, fatigue is of evolutionary 

importance. 

Thirdly, in the Trans Europe footrace which covers 4487km, Freund and colleagues 

demonstrated that in most runners the event generated potentially adaptive osteogenic and 

tendon responses, with a small number experiencing oedema and plantar fascia issues 

(Freund et al., 2012). In the same cohort Freund also noted that pain tolerance is much 

higher, but it is noted that this tolerance may be a consequence not a cause of prolonged 

distance running (Freund et al., 2013). Both findings have bearing upon fatigue, as the 

extreme exercise duration required to participate in and complete these events requires a 

body and mind that can tolerate prolonged running over successive days.  

Fatigue in the context of ultra-running may appear to be a process of attrition, whereby 

athletes manage physiological resources and psychological load, employing mitigation 

strategies, such as performance nutrition which may actively combat fatigue (Costa, 

Hoffman and Stellingwerff, 2018; Hoffman, Stellingwerff and Costa, 2018). Whereas 

shorter distance events (e.g. <half marathon/21.1km) may still be contested in a time trial 

like fashion and present a faster time course of fatigue, whilst a well-honed interoceptive 

network is crucial to success at the elite level, if an appropriate fatigue template is not 
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generated symptoms of fatigue are likely accelerated more quickly, due to elevated 

metabolic and thermoregulatory requirements of running at >20 km/h.  

 

2.4 Heat as a driver of fatigue 

As identified in section 2.2.3.3, heat is a powerful driver of fatigue and typically reduces 

performance in comparison to performance in temperate environmental conditions. There 

are several responses that underpin this global reduction in physiological output, which 

also alter accompanying perceptual variables. The following sections detail these 

outcomes in isolation for adequate illustration and scrutiny. It should be borne in mind 

though that these systems, whilst displaying different response time courses, accumulate 

to limit endurance exercise performance collectively, and an elevation in one system may 

lead to a downregulation in another, and vice versa, but performance would still be 

impaired. 

 

2.4.1 Physiological effects and responses 

2.4.1.1 Inhibition and habituation of central factors 

Central factors may be impaired due to acute endurance exercise performance in the heat, 

however it seems that exercise needs to be of a sufficient duration to for this to occur. This 

highlights the likely role of increased Tcore in the inhibition of central drivers of 

performance (Ftaiti et al., 2001; Racinais and Oksa, 2010) as time is required for Tcore to 

become elevated.  

To assess the relationship between temperature and neuromuscular activity, Ftaiti and 

colleagues (2001) performed a quite contrived experiment, whereby they maximised the 

rate of heat storage of athletes by having them exercise at 65% vV̇O2max for 40 min, whilst 

wearing a non-permeable tracksuit. Prior to and immediately post-exercise participants’ 

knee extension and flexion torques were assessed at 60 and 240º.s-1, with EMG recorded 

throughout. Participants reported elevated temperatures (40.0 ± 0.3ºC) and demonstrated 

a reduction in torque and EMG activity during the slow (60º.s-1) but not the fast (240º.s-1) 

component, suggesting endurance may be impaired but fast contractions may not be. 

Tucker (Tucker et al., 2004) showed a similar inhibition of 20km cycling performance in 

hot conditions, as participants could only sustain ~25-30% MVC in hot (35ºC) conditions 

compared to 30-45% MVC in cool (15ºC) conditions. Participants in cool conditions also 

demonstrated a clear ‘end spurt’ as expressed by change in %MVC and power output, but 

this was largely absent from trials in the heat, which also showed a reduction in power 



 47 

output at 80% of trial duration. Again, Tcore was elevated in the heat to a final Tcore of 39.2 

± 0.6ºC, emphasising the role of an elevated temperature exacerbating a reduction in 

central output. Time trial performance (p<0.05) and power output (p<0.01) were worse in 

the heat than in cool conditions; we can be somewhat confident that this time difference 

between trials of 48 seconds or 2.7% is meaningful as participants were classified as 

performance level 3 (De Pauw and Roelands, 2013) and the change exceeds typical 

coefficient of variation of cycling time trial performance (Paton and Hopkins, 2006).   

Central factors can acclimate to heat however, and these effects may also be exercise 

stimulus specific. Wingfield et al., (2016) demonstrated differential responses in MVC 

and associated variables to short term heat acclimation (five days; 32.0 ± 1.6ºC) depending 

upon exercise duration and intensity (Wingfield et al., 2016), in performance level 1 

athletes (V̇O2max < 45ml.kg.min-1; (De Pauw and Roelands, 2013)). When a 30 min high 

intensity stimulus was applied participants improved sprint power output (5.6%) and 

maintained MVC, whereas 90 min low intensity (40% Wmax) exposures impaired MVC 

but improved 20km cycling time trial performance in comparison to the 30 min high 

intensity group. Whilst the notion of undertaking an intensity personalised heat 

acclimation strategy to mitigate the effects of central fatigue in hot conditions is appealing, 

a combination of both high and low intensity sessions is likely the most advantageous for 

an athlete, so that time at high Tcore is also accumulated as well as efforts sport specific 

intensities. 

 

2.4.1.2 Brain Temperature 

The temperature difference between the aorta and jugular venous blood supplies is 

typically 0.3ºC; during exercise associated hyperthermia this is reduced to 0.2ºC 

suggesting that the brain undergoes a heat storage response in line with aortic blood 

temperature, and is at least 0.2ºC > Tcore (Nybo, Secher and Nielsen, 2002; Nybo, 2012). 

Lowering brain temperature during exercise in humans may not be possible, even when 

seemingly targeted mechanisms such as neck cooling are employed (Tyler, Wild and 

Sunderland, 2010; Nybo, 2012; Tyler, Sunderland and Cheung, 2013; Bright et al., 2019) 

due to the relatively minimal amount of contact area and therefore opportunity for heat 

transfer between (aortic and venous) blood supply and the cooling intervention, which is 

exacerbated due to a reduction in brain blood flow concomitant with the increase in brain 

temperature (Nybo et al., 2002; Nybo, Secher and Nielsen, 2002; Nybo, 2012). 

Oesophageal cooling through ice slurry ingestion may present an alternative to neck 

cooling (Siegel and Laursen, 2012) due to the close proximity of the oesophagus and 
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carotid arteries (Mariak et al., 1999; Siegel and Laursen, 2012), yet Nybo (2012) suggests 

that despite cooling strategies such as face fanning lowering tympanic membrane 

temperature (Nybo, Secher and Nielsen, 2002) practitioners’ efforts are best directed 

towards lowering Tcore as arterial and venous blood temperatures remain elevated. 

  

2.4.1.3 Core Temperature 

Core temperature (Tcore) is reported as being consistently elevated following exercise in 

the heat. This elevation is brought about by a mismatch between the rate of heat loss and 

heat storage and can be expressed using the following equation (Kenny and Jay, 2013): 

(𝑀 − 𝑊) = (𝐻𝑑𝑟𝑦 +  𝐻𝑒𝑣𝑎𝑝 + 𝐻𝑟𝑒𝑠𝑝) + 𝑆 

Where M is metabolic rate and W is work performed, thus (M – W) is metabolic work. All 

H elements are methods of heat dissipation; Hdry is dry heat transfer and is the 

accumulation of heat lost through conduction, convection and radiant heat loss. Hevap is 

heat lost through evaporation due to differences in partial pressure of liquid on the skin’s 

surface relative to the local environment and Hresp is heat lost through respiration, the rate 

of which is determined by pulmonary ventilation (Kenny and Jay, 2013). Finally, S 

represents the rate of heat storage and is driven by an imbalance between heat production 

(M – W) and heat loss (Hdry + Hevap + Hresp). Through examination of the above equation 

it is easy to see that exercise in the heat results in a clear mismatch between rates of heat 

loss and heat storage, especially if humidity is also high. The relative intensity of exercise 

performance determines the rate of heat accumulation (Mora-Rodriguez, Del Coso and 

Estevez, 2008) and thus has been recommended as a predictive factor for those looking to 

purposefully increase Tcore for activities such as heat acclimation strategies (O. R. Gibson 

et al., 2016).  

Heat accumulation during exercise can be potentially fatal (Casa et al., 2015), with an 

increased awareness of the prevalence of exertional heat illness sustained during exercise, 

especially in student athletes (Casa et al., 2015; Rodgers, Slota and Zamboni, 2018). The 

role of a critical core temperature (~40ºC) in fatigue is discussed in section 2.3.2.3. 

Adopting a uniform critical core temperature of 40ºC may be a dubious assumption, as 

elite level cyclists (Racinais et al., 2019) and race walkers (Stevens, unpublished 

observations) demonstrate temperatures >40ºC in competition. These data are supported 

by Ely and colleagues in competitive runners who showed Tcore > 40ºC in 12 of 17 runners 

(B. R. Ely et al., 2009), and Byrne in 10 of 18 recreational runners, reporting a peak value 

in one athlete of 41.7ºC (Byrne et al., 2006).  
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Strategies to mitigate increased Tcore during exercise are outlined in section 2.5, but 

perhaps the most interesting finding with respect to Tcore is that when ice slurry is ingested 

to prophylactically lower Tcore prior to exercise, at the point of exercise termination athletes 

who ingested ice slurry may report a higher Tcore than those who did not due to an increased 

metabolic work output (Siegel et al., 2010), potentially delaying recovery from an exercise 

bout. This would be exceptionally important in events that require performance in hot 

environments on consecutive days such as La Vuelta a España or Rugby Sevens 

tournaments (L. Taylor et al., 2018), and may suggest a role for cooling strategies that 

target the peripheral temperature of an athlete as well as Tcore.   

 

2.4.1.4 Peripheral/ Skin Temperature 

As with Tcore, peripheral or skin temperature (Tskin) increases as exercise intensity or 

duration in the heat increases (Tucker et al., 2006; Siegel et al., 2010; Schlader, Simmons, 

Stannard and Mündel, 2011a; Levels et al., 2012; Cuddy, Hailes and Ruby, 2014; Rendell 

et al., 2017; Willmott et al., 2018). This is due to an increased rate of blood flow to the 

periphery which increases the gradient between the environment and skin vapour pressure 

to facilitate Hevap. This higher rate of perfusion aims to lower Tcore ( Maughan, 2010) or at 

least modify the core to skin temperature gradient, which has been considered as a driver 

of fatigue (Cuddy, Hailes and Ruby, 2014) to the effect of a 1.5% performance impairment 

per 1ºC Tskin increase (Sawka, Cheuvront and Kenefick, 2012). Minimising the Tcore to 

Tskin gradient and reducing the potential for Hevap by wearing additional clothing has 

recently been explored as a method of heat acclimation (Stevens et al., 2018; Willmott et 

al., 2018); this intervention successfully increases Tskin due to the previously stated 

mechanisms, but sweat rate also increases (Stevens et al., 2018; Willmott et al., 2018) 

which has the potential to decrease cardiac output (Q̇) and accelerate dehydration, 

subsequently impairing endurance exercise performance. 

 

2.4.1.5 Sweat Rate  

When exercising in the heat, athletes demonstrate an increase in sweat rate than in cooler 

conditions (Sawka, Cheuvront and Kenefick, 2012), with fitter athletes also demonstrating 

an earlier onset of sweating in hot conditions than lesser trained counterparts (Cheung and 

McLellan, 1998). An increased sweat rate aims to decrease the rate of heat storage by 

diverting temperature away from the core, and towards the periphery, this is driven by an 

increased cutaneous vasodilation, effectively increasing the rate of perfusion of the skin. 

In doing so we predominantly see an increase in the evaporative heat loss (Hevap) as the 
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partial pressure of liquid on the skin (sweat) may exceed that of the local environment 

(humidity) and because of this pressure gradient, evaporation occurs.  

The ability to dissipate heat via Hevap clearly becomes compromised in humid 

environments, where the moisture content of the local environment may exceed the rate of 

Hevap; thus, the water pressure gradient is reduced between the skin and environment and 

a local heat storage response occurs at the skin, which in turn elevates Tcore as blood, 

originating from working musculature, cannot be cooled sufficiently. This can be partially 

combatted by Hdry which may be altered as a result of wind speed (A. G. Saunders et al., 

2005), clothing (Stevens, 2018; Willmott et al., 2018) or performance velocity (Nybo, 

2010; Mora-Rodriguez, Ortega and Hamouti, 2011) but performance will ultimately be 

limited if the rate of heat production (M – W) and the environmental conditions exceed the 

individual’s ability to dissipate heat (Kenny and Jay, 2013). This is exemplified in the case 

study of Alberto Salazar competing in the 1984 Los Angeles Olympic Marathon 

(Armstrong, Hubbard, et al., 2016), during which Salazar lost 8.1% of his bodyweight 

(5.43kg) over 134 minutes of running equating to a sweat rate of >3L.h-1. This occurred 

despite fluid provision throughout the race and conditions that were below the human 

thermoneutral zone (23.9-27.8ºC dry bulb), facilitated Hevap (wind speed: 2.2-5.4m.s-1) but 

with high humidity (75% (Armstrong, Hubbard, et al., 2016)).  

Interestingly, if Tcore increases by 1ºC but Tskin remains the same, then there is a diversion 

of blood back to the core or working musculature and skin blood flow is lowered, a worked 

example is calculated by Sawka et al. (2012) as follows: a 38ºC Tcore and a 36ºC Tskin 

requires 4.4L.min-1 skin blood flow, but a 39ºC Tcore and a 36ºC Tskin only require a skin 

blood flow of 2.9L.min-1 (Sawka et al., 2012). Some of the advantages of this reduction in 

peripheral blood flow are a reduction in HR for a given temperature due to an improved 

maintenance of Q̇ and V̇O2max (Cheuvront et al., 2010), improved brain blood flow and 

brain oxygenation during exercise (Nybo and Nielsen, 2001; Nybo et al., 2002; Sawka et 

al., 2012). The inverse is true with higher Tskin, which demonstrates an exponential 

relationship with HR as Tskin elevates >35ºC (Cheuvront et al., 2003).   

Sweat rate is also inextricably linked with hypohydration and percentage bodyweight loss 

during exercise. Hyponatraemia will not be discussed despite its reported prevalence in 

mass participation endurance activity (Almond et al., 2005; Hew-Butler et al., 2015), as 

heat (>28ºC) will likely increase sweat rate to offset fluid consumption in that context, 

managing risk of occurrence.  

Hypohydration has been shown to decrease performance (Cheung and McLellan, 1998; 

Castellani et al., 2010; Kenefick et al., 2010; P. Watson et al., 2015; Funnell et al., 2019) 
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and is typically considered to be deleterious from ~2% bodyweight loss in laboratory 

settings (Montain and Coyle, 1992), which can be assessed simply as a urine colour ≥5 on 

the urine colour chart (McKenzie, Munoz and Armstrong, 2015). The magnitude of 

performance deficit sustained depends also upon environmental temperature (Kenefick et 

al., 2010; Sawka et al., 2012), as Kenefick and colleagues showed a greater performance 

deficit during a 15 min time trial as temperature increased (10ºC, 20ºC, 30ºC, 40ºC), 

showing performance decrements >CV from 20ºC. This is interesting as it not only 

suggests that performance can be impaired due to hypohydration in relatively mild 

temperatures (20ºC) but suggests that performance may not worsen outside of CV in cool 

conditions (10ºC) because of hypohydration. As this low temperature range is considered 

optimal for marathon running (Maughan, Watson and Shirreffs, 2007; Kenefick, 

Cheuvront and Sawka, 2007; M. R. Ely et al., 2008; Maughan, 2010; Helou et al., 2012), 

it is not unreasonable to suggest that a small reduction in bodyweight and accompanying 

provision of fluids during the race, may improve performance because of enhanced 

exercise economy. This is supported by at least three separate investigations. Firstly, 

Zouhal and colleagues demonstrated that in a sample of 643 marathon runners, those 

runners who attained a faster finishing time showed a significant relationship bodyweight 

loss, especially in those who completed the marathon in <3 h, who demonstrated 

bodyweight losses of >3% on average (Zouhal et al., 2011). The authors conservatively 

concluded that drinking ad libitum during a marathon permits a greater reduction in 

bodyweight but may also be ergogenic. This is supported by a meta-regression from 

Goulet (2011), that found that athletes performing self-paced time trials in outdoor 

conditions experienced hypohydration up to 4% bodyweight loss, and that this was not 

deleterious to performance. The greatest improvements in power output (2-8%) were seen 

between 1-2% bodyweight loss, but these results should be treated cautiously as only seven 

studies, with low sample sizes (6-10 participants), across a range of temperatures were 

included in the analysis (Goulet, 2011). The authors do present a funnel plot to assess 

publication bias, but there are an equal number of positive and negative responses as a 

result of hypohydration. Taken together these findigns suggest that whilst exercised 

induced hypohydration may not impair performance, the response is likely highly 

individual in nature. Finally, in 2016, Adams et al showed that in 16 male and 16 female 

participants who undertook the 2014 Falmouth road race (11.3km), percentage 

bodyweight loss (≤2.5%) was predictive of faster finishing time (R2 = 0.19; p = 0.018), 

faster average pace (R2 = 0.29; p = 0.012) and greater percentage from predicted finish 

time (R2 = 0.15; p = 0.033) (Adams et al., 2016).  
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Percentage bodyweight losses and performances in the above investigations suggest that 

exercise induced hypohydration may be beneficial over moderate exercise durations with 

respect to exercise performance, this may be driven by improvements in exercise economy 

and mechanical efficiency due to an acute reduction in bodyweight. However, in hot 

temperatures (≥30ºC) this ‘tactical hypohydration’ is to be discouraged, as bodyweight 

losses are likely accelerated and so elevations in Tskin may increase cardiovascular strain 

and impair %V̇O2max and Q̇ that can be recruited during exercise performance.  

 

2.4.1.6 Respiratory alterations and effects upon substrate oxidation 

Perhaps the most familiar mental image when one considers respiration and the heat is that 

of a panting dog. Panting is considered an evaporative cooling mechanism, and is used to 

regulate Tcore within dogs upon exposure to hot temperatures (Anrep and Hammouda, 

1932). In humans under heat exposure, this response may be described as thermal 

hyperpnea, or hyperthermic hyperventilation (M. D. White, 2018) and whilst unlikely to 

be the primary thermoregulatory mechanism during exercise in hot conditions unless 

sweating is compromised (M. D. White, 2018). Some cooling via Hresp may occur due to 

an increase in V̇E, as gases’ capacity for retaining moisture increases with temperature 

(Kenny and Jay, 2013). 

Elevated V̇E serves further useful functions during exercise such as increasing blood pH 

and decreasing bicarbonate stores (due to increased [H+] efflux) and lowering PaCO2 

(Nybo, Rasmussen and Sawka, 2014), proportional to the increase in V̇E (Tipton et al., 

2017), but potentially at the cost of reducing brain blood flow and thus cerebral cooling 

(Nielsen and Nybo, 2003; Nybo, 2012; Tipton et al., 2017). The mechanism by which V̇E 

increases in the heat is thought to be a combination of respiratory frequency and tidal 

volume, themselves elevated by increased central command and associated metabolites, 

as well as heat per se (Tipton et al., 2017). 

Increases in V̇O2 and thus %V̇O2max, are observed in the heat, but are mediated by a range 

of factors across various physiological systems such as Tskin (section 2.4.1.4), sweat rate 

(section 2.4.1.5) and core (section 2.4.1.3) and brain (section 2.4.1.2) temperatures. As 

exercise duration increases in the heat V̇O2max is lowered (most likely due to a reduction 

in Q̇), and thus the ability to respond to high intensity exercise demands is diminished 

(Nybo et al., 2001). These effects are thought to be due to a reduction in V̇O2max (most 

likely due to its multifactorial nature) as opposed to a reduction in V̇O2 kinetics (Nybo et 

al., 2001).  
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Downstream metabolism, i.e. substrate metabolism, is clearly affected by alterations in 

V̇O2 during exercise in the heat; these effects do not solely respond to alterations in 

gaseous exchange, but also respond to alterations in the internal milieu of the muscle and 

potentially muscle temperature (Q10 effect). This was first shown by Fink and colleagues 

in 1975, who demonstrated approximately a two-fold increase in lactate and 

glycogenolysis, and a halving in the rate of lipolysis in biopsied muscle following 60 min 

of exercise in hot (41ºC) compared to cold (9ºC) conditions (Fink, Costill and Van Handel, 

1975), which they attributed to a reduction in muscle blood flow. There is also evidence 

to suggest that exercise in hot conditions may alter adrenal responses to exercise and 

muscle fibre type recruitment (Febbraio et al., 1994; Febbraio, 2001), which may 

accelerate fatigue in and of itself, but further emphasises that an increased rate of 

glycolysis and glycogenolysis is likely a contributory factor to fatigue during exercise in 

the heat. 

These effects may be partially mitigated by the ingestion of exogenous carbohydrate 

during exercise in the heat (Carter, Jeukendrup and Jones, 2005; Leites et al., 2016), 

preferably from multiple transportable sources (Jentjens et al., 2006). Note that in the heat 

it is predominantly neither the availability of carbohydrate, nor increased carbohydrate 

oxidation that are considered contributory factors to fatigue, both of which have been 

known to improve performance since the early 20th century (Krogh and Lindhard, 1920; 

Levine, Gordon and Derick, 1924; B. Gordon et al., 1925; Edwards, Margaria and Dill, 

1934) but the origin of the carbohydrate being oxidised (Fink, Costill and Van Handel, 

1975; Febbraio et al., 1994; González-Alonso, Calbet and Nielsen, 1999; Febbraio, 2001).  

 

2.4.2 Perceptual effects and responses 

The previous subsection outlined physiological effects and responses of exercising in hot 

environmental conditions. However, attending to perceptual symptoms of heat exposure 

may lead to thermoregulatory behavioural modifications (Flouris and Schlader, 2015), the 

first of which is a reduction in exercise intensity (Schlader, S. R. Stannard and Mündel, 

2011; Schlader, Simmons, Stannard and Mündel, 2011b). Tending to perceptual factors 

through either thermal (see section 2.5) or non-thermal interventions (e.g. menthol; section 

2.5.1) may improve exercise performance in the heat, but whether this confers a risk to 

health and homeostasis beyond the exercise bout remains to be elucidated (Stevens and 

Best, 2017; Best, Payton, et al., 2018) and most likely depends upon the nature and severity 

of the intervention employed. 
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2.4.2.1 Thermal Comfort and Thermal Sensation 

Behavioural thermoregulation was first examined by Weiss and Laties (1961) and was to 

‘specify the relation between body temperature and a response which provided an 

exteroceptive source of heat’ (Weiss and Laties, 1961). This response can be divided and 

quantified as sensations representing perceived thermal pleasantness and interoceptive 

temperature detection. Specifically, thermal comfort is considered the affective 

component of temperature detection and is an assessment of how satisfactory the thermal 

environment is to an individual (Bligh and K. G. Johnson, 1973) and may best be described 

as a perceived thermal ambivalence (Flouris and Schlader, 2015). Whereas thermal 

sensation can be considered the intensity of temperature perceived by an individual (Attia, 

1984). During exercise it appears that thermal sensation and RPE are the primary drivers 

of behavioural thermoregulation, whereas at rest thermal comfort is the dominant 

perceptual stimulus (Attia, 1984; Flouris and Schlader, 2015). The strength of this 

relationship may be determined in part by aerobic fitness (Zora et al., 2017). 

Exercise in hot conditions increases thermal sensation, and decreases thermal comfort, but 

unlike physiological symptoms of heat stress the rate of increase does not appear to be 

correlated with exercise intensity (Schlader, Simmons, Stannard and Mündel, 2011a), but 

exercise intensity may be determined by thermal comfort and sensation at the onset of 

exercise (Schlader, Simmons, Stannard and Mündel, 2011a). A causal role cannot be 

established however, as alterations in thermal perception are underpinned by changes in 

physiological systems (Cabanac, 1971; Cheung, 2007; 2010; Schlader, S. R. Stannard and 

Mündel, 2011) and to a certain extent, vice versa, as modification of exercise intensity 

itself can be considered a thermoregulatory behaviour. 

Thermal comfort and thermal sensation are primarily driven by increases in Tskin, until the 

point of hyperthermia when Tcore becomes the primary factor in thermal comfort 

determination, whereas thermal sensation is modified independently of Tcore (Schlader et 

al., 2009; Schlader, S. R. Stannard and Mündel, 2011; Schlader, Simmons, Stannard and 

Mündel, 2011a; Vargas et al., 2018). This is logical as behavioural modifications and heat 

stimuli can more readily manipulate Tskin than Tcore, also modifications in Tskin will likely 

affect peripheral blood flow and regional sudomotor activities, as outlined in sections 

2.4.1.4 and 2.4.1.5, and may be countered via thermal strategies (Schlader, Simmons, 

Stannard and Mündel, 2011b; Mündel, Raman and Schlader, 2016) which are discussed in 

section 2.5.  
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2.4.2.2 Thirst 

Thirst is a complex phenomenon with a relatively simple purpose of ensuring hydration 

within the homeostatic limits. Eccles (2000), notes that thirst can be defined broadly as a 

sensation of a desire for water; but this fails to differentiate between factors that contribute 

to thirst such as a general thirst drive, acute mouth dryness or the salt content of foods and 

beverages (Eccles, 2000). Instead, Eccles recommends Epstein’s 1991 definition that thirst 

is defined as ‘the specific, central motivational state of readiness to consume water.’ (A. 

N. Epstein, 1991). Epstein clarifies ‘by central of course, I mean it goes on in the brain.’ 

This comment is important for the present thesis, as unlike thermal comfort or sensation it 

is not driven by peripheral factors such as an increase in Tskin or even Tcore (Cleary, Toy 

and Lopez, 2014; Armstrong et al., 2015; Armstrong, Johnson, et al., 2016; Funnell et al., 

2019), but is instead driven by dedicated neural networks (Gizowski and Bourque, 2017; 

Augustine et al., 2018; Zimmerman et al., 2019), and supported by osmolality receptors, 

anti-diuretic hormone and aldosterone (Thornton, 2010), as thirst ultimately is the 

perceptual representation of blood osmolality and wider body fluid homeostasis (Eccles, 

2000; Gizowski and Bourque, 2017). 

In hot conditions thirst is typically elevated (Cleary, Toy and Lopez, 2014; Armstrong et 

al., 2015; Armstrong, Johnson, et al., 2016), and in lab conditions increases proportionally 

(p<0.02) to percentage bodyweight lost due to exercise in the heat (Engell et al., 1987). If 

thirst was not tended to through water ingestion and symptoms were to progress to the 

point of catastrophe, this would naturally accelerate other physiological factors associated 

with fatigue related to blood; such as blood temperature, rate of perfusion of working 

musculature and skin, Tskin and Q̇, due to an elevated HR and decreased SV.  

In ecologically valid conditions, a range of thirst advice is provided, from drinking to thirst 

(Noakes, 2010) to drinking to a prescriptive schedule (Kenefick, 2018), however factors 

such as event duration, event intensity, opportunity for drinking, fluid provision on course, 

personal tolerance and the anticipated ambient temperature during an event must also be 

considered. Examples of this multi-faceted approach are prevalent in ultra-running 

literature (Stellingwerff, 2016; Hoffman, Stellingwerff and Costa, 2018; Best, Barwick, et 

al., 2018), but likely apply to all other sports that employ fluid provision strategies, 

especially when competing in the heat (Kenefick, 2018). Managing these factors is a 

challenge, but in most instances, athletes do not have access to information or methods of 

assessment of some of these variables during competition, and so provided event duration 

is <1.5 hours and conditions are not hot (e.g. >28ºC) (Kenefick, 2018), drinking may be 

self-directed on the condition that drinking behaviour does not increase bodyweight, but 
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bodyweight reductions of ~2-3% may be permissible based upon information presented in 

section 2.4.1.5.  

The temperature of fluids ingested (during exercise) may affect the degree of thirst 

satiation provided by that beverage (Brunstrom and Macrae, 1997; van Belzen, Postma 

and Boesveldt, 2017), and cold drinks in hot temperatures have been repeatedly shown to 

improve endurance performance (Burdon et al., 2010a; Riera et al., 2014; Tran Trong et 

al., 2015). These responses may be both physiologically and perceptually mediated, as a 

beverage that is sufficiently cool enough to lower Tcore during exercise would likely also 

provide a sensory refreshing stimulus (Eccles et al., 2013). The maintenance of such cold 

drink temperatures presents an applied problem for practitioners, but is also confounded 

by thermo-sensory afferents such as menthol (Eccles, 2000) which may also attenuate 

thirst as a result of stimulation of oral cold receptors (see section 2.5.1).  

To conclude thirst in and of itself does not cause fatigue during endurance exercise 

performance (in hot conditions) but may be an indicator that blood-borne changes in water 

and sodium content have occurred or are occurring. These changes may have downstream 

effects that work to limit endurance performance more directly. 

2.4.3 Manifestations in performance  

Ultimately, exposure to heat during exercise can increase the physiological strain, and 

perceptual assessment of such strain, placed upon an athlete. These symptoms worsen as 

exercise increases in duration and intensity. Hence, methods are employed to attenuate 

physiological and or perceptual symptoms experienced during exercise in the heat; these 

are typically applied topically or ingested and can be administered before or during 

exercise, or throughout the entire exercise bout. The next section will briefly introduce 

these strategies, which are further reviewed and their effects quantified in Chapter 3. 

 

2.5 Methods employed to cool athletes 

Athletes performing in hot environments may employ cooling strategies before, during 

and between exercise bouts to reduce the physiological and perceptual strain experienced, 

in turn this may improve performance. Chapter 3 provides a systematic review and meta-

analysis of topical and oral cooling strategies with respect to time trial performance, so 

this section aims to briefly introduce these concepts and outline their physiological and 

performance implications. 

Topical cooling strategies (Figure 2) work by either physiologically or perceptually 

lowering the temperature of the skin by either altering the gradient between the Tcore and 

the periphery or between Tskin and the environment, or applying a potent cold stimulus to 
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a large cold sensitive area such as the neck, chest or back (Filingeri, 2011). Known effects 

of topical cooling are alterations in sweat rate and skin blood flow (Gillis, Weston, House 

and Tipton, 2015), and improvements in perceptual factors (e.g. thermal comfort and or 

thermal sensation (Kay, Taaffe and Marino, 1999; Arngrïmsson et al., 2004; A. B. 

Stannard et al., 2011; Scheadler et al., 2013; Guéritée et al., 2015; Gillis, Weston, House 

and Tipton, 2015). Altered rates of heat accumulation during exercise are also noted, but 

most older literature concerning topical (physiological) cooling is partially flawed due to 

the impracticality of the methods used to cool athletes such as exposure to cold air of 0-

5ºC (Cotter et al., 2001), although this acts as a strong mechanistic control in comparison 

to other topical cooling strategies.  

Cold water immersion presents a small advance in this area and has indeed shown 

performance improvements (Marsh and Sleivert, 1999; Peiffer et al., 2010; Siegel et al., 

2011; Rinaldi et al., 2018; Choo et al., 2019) brought about by a reduction in body 

temperature, but again the reality of athletes participating in this prior to competitive 

exercise, which has scheduled call room procedures and equipment checks, is speculative. 

Cooling garments such as ice vests (Cotter et al., 2001; Arngrïmsson et al., 2004; 

Hasegawa et al., 2005; A. B. Stannard et al., 2011; Randall, E. Z. Ross and Maxwell, 

2015) or water perfused suits (Cotter et al., 2001; Hsu et al., 2005; Scheadler et al., 2013; 

Carrasco, 2013) may present a more user friendly method of cooling athletes topically, 

and are possibly more efficacious as they are applied to large heat sensitive areas, and 

lower blood and core temperatures (N. F. Gordon, Bogdanffy and J. Wilkinson, 1990; 

Cotter et al., 2001; Carrasco, 2013), extending exercise performance by the creation of a 

short term ‘heat sink’ (N. A. S. Taylor, Tipton and Kenny, 2014). 
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Figure 2-3 Schematic diagram highlighting the factors targeted by topical cooling methodologies e.g. ice 

vests, pre-exercise cold water immersion 

 

 

Figure 2-4 Schematic diagram highlighting the effects of ingested cooling methodologies on heat production, 

transfer and loss 
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The notion of a ‘heat sink’ is more evident when athletes undertake ingested cooling, in 

the form of ice slurries (Siegel et al., 2010; 2011; Stevens et al., 2013) or cold beverages 

(Mündel et al., 2006; J. K. W. Lee and Shirreffs, 2007; J. K. Lee, Shirreffs and Maughan, 

2008; Burdon et al., 2010a;2010b Maunder, Laursen and Kilding, 2016). Ingested cooling 

actively lowers Tcore and in doing so favourably alters the gradient between Tcore and Tskin 

(Kenefick et al., 2007), which permits a greater rate of heat accumulation throughout the 

exercise bout and has been shown to improve cycling and running performance (Siegel et 

al., 2010; 2011; M. L. Ross et al., 2012; Levels et al., 2013; Stevens et al., 2013; Maunder, 

Laursen and Kilding, 2016) and time to exhaustion (Siegel et al., 2010).  

Recent work has shown that ingesting ice late in the exercise bout may improve cycling 

time to exhaustion in hot environmental conditions (Jeffries, Goldsmith and Waldron, 

2018); here ice serves to reset the thermal interpretation of exercise stress and attenuates 

the environmental stress received by thermoreceptors. The same study also showed non-

thermal cooling, achieved by menthol mouth swilling, to be effective (Jeffries, Goldsmith 

and Waldron, 2018). Menthol and ice share the same molecular target, and have 

demonstrated improvements in time trial performance in tropical environments when co-

ingested (Riera et al., 2014; Tran Trong et al., 2015). Menthol has also shown promise as 

a non-physiological topical cooling strategy; the following section will explore the 

mechanism underpinning menthol’s ability to impart perceptual sensations of cool, and 

improve exercise performance when applied topically or orally.  

 

2.5.1 Menthol as a novel cooling strategy during exercise 

The effects of menthol have long been known to impart feelings of cool and freshness. 

Menthol was characterised by German chemist F.L. Alphons Openheim, first in French in 

1861 (Oppenheim, 1861) and again in English in 1862 (Oppenheim, 1862), as the camphor 

of mint; as it is analogous to campholic alcohol the name menthol is aptly derived from 

Mentha piperita, the Latin for peppermint. Academic literature dating to 1890 espouses 

the benefits of menthol for respiratory infections (Potter, 1890) and cooling via stimulation 

of thermoreceptors is first noted in 1896 (Somers, 1986). The first documented case of 

menthol poisoning also notes a cooling sensation from the blood (Schwenkenbecher 1906 

in (Hensel and Zotterman, 1951). These subjective abilities of menthol to alleviate nasal 

congestion and impart sensations of cooling are excellently reviewed by Ronald Eccles, 

who has written a number of summaries pertaining to menthol’s cooling characteristics 

and associated psychophysiological responses that form the backbone of this thesis 

(Eccles, 1994; 2000; Eccles et al., 2013). 
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Recently, menthol has been adopted as a cooling strategy to attenuate perceptual 

symptoms associated with exercising in the heat such as thermal comfort and sensation. 

Typically, menthol is applied before and or during exercise, with oral and topical 

administration of menthol targeting differing perceptual and thermoregulatory 

mechanisms. These are introduced here, with a systematic review of the literature 

presented in Chapter 4, before subsequent investigation throughout the remainder of the 

thesis.  

Menthol is administered in two forms with respect to the exercise bout. Topically, menthol 

may be applied as a cream/gel (Kounalakis et al., 2010; Topp et al., 2011; Akehi and Long, 

2013; Topp, Ledford and Jacks, 2013; Valente et al., 2015; Botonis et al., 2016) or as a 

spray (Gillis, House and Tipton, 2010; Barwood, Corbett and D. K. White, 2014; Gillis, 

Weston, House and Tipton, 2015; Barwood, Kupusarevic and Goodall, 2018a); these 

products may contain complimentary ingredients or surfactants with a view to increasing 

product efficacy, marketability or ease of application. Menthol containing topical products 

are often used to treat pain, as menthol can act as an analgesic and counterirritant (Galeotti 

et al., 2002; Gaudioso et al., 2012), but concentrations >30% menthol may elicit pain 

(Gaudioso et al., 2012). Menthol can also be administered orally, as a mouth swill (Mündel 

and D. A. Jones, 2009; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016; 

Flood, Waldron and Jeffries, 2017; O. R. Gibson, Wrightson and Hayes, 2018; Jeffries, 

Goldsmith and Waldron, 2018) or co-ingested with other physiological cooling strategies 

(Riera et al., 2014; Tran Trong et al., 2015; Riera et al., 2016); these strategies expose 

menthol to cold sensitive nerve endings of the mandibular and maxillary branches of the 

trigeminal nerve (Hummel and Livermore, 2002; Lu et al., 2013). 

Both strategies elicit sensations of cooling and do so by stimulating transient receptor 

potential melastatin 8 (TRPM8) receptors. These are voltage gated ion channels embedded 

within cell membranes and are especially prevalent in the dorsal and trigeminal ganglia 

(Kalantzis, Robinson and Loescher, 2007; Nazıroğlu and Özgül, 2011) but are also found 

in the upper gut, vascular smooth musculature, bladder and male genitalia (Nilius and 

Owsianik, 2011). Upon stimulation, through either a fall in temperature to below 26ºC or 

application of menthol or eucalyptol, there is a depolarisation and the electric potential of 

the membrane is altered due to a flux in Ca2+ and Na+ ions, and subsequent generation of 

an action potential (Galeotti et al., 2002; Gaudioso et al., 2012). If a menthol containing 

stimulus is applied at a sufficient concentration/intensity, either orally or topically, 

behavioural, physiological and sensation modifications may occur. This has been shown 

elegantly by Bautista and colleagues (2007), who demonstrated that if the genes for 
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TRPM8 were ‘knocked out’ in mice there was a loss of cold and menthol sensitivity down 

to a temperature of 10ºC (Bautista et al., 2007) and in doing so highlight TRMP8’s role as 

the primary detector of environmental cold. It is also noteworthy that menthol stimulates 

in a manner that is inversely proportional to the thickness of the stratum corneum in the 

area on which it is applied (H. R. Watson et al., 1978). This explains the use of the tongue 

as a tissue of interest in most animal research concerning the absorption and resultant 

excitation of nerve fibres following menthol application, and the less potent effects 

observed when menthol is applied topically during exercise. 

Topical application of menthol prior to or during exercise has consistently been shown to 

ameliorate subjective thermal sensations during endurance exercise (Barwood et al., 2012; 

Barwood, Corbett and D. K. White, 2014; Barwood et al., 2015; Gillis, Weston, House 

and Tipton, 2015; Gillis et al., 2016; Barwood, Kupusarevic and Goodall, 2018b), but 

increases in sweat rate, skin blood flow and heat storage (Gillis et al., 2016) have also been 

shown, as per Figure 2.4. This may or may not (positively) influence exercise performance, 

and likely depends upon the strength (i.e. concentration or area to which menthol is 

applied) or frequency of the ‘signal’ brought about by menthol application. This has 

recently been exemplified by Barwood and colleagues (Barwood, Kupusarevic and 

Goodall, 2018) who showed that a repeated application of menthol, delivered via a spray 

at 0.20% menthol at 20 and 40 min of an exercise bout consisting of 45min fixed work 

and a TTE (70% maximum power), improved TTE. This had previously not been shown 

following single application by the same research group, in similarly designed studies 

(Barwood et al., 2012; Barwood, Corbett and White, 2014; Barwood et al., 2015), 

suggesting a relatively quick decay in menthol’s effects that may be mediated by exercise 

intensity and the rate of evaporative cooling, driven by the exercise environment e.g. wind-

speed; these effects are also known to be exaggerated if a topical application contains 

alcohol (Gillis et al., 2016). 

Menthol may also be applied topically as an analgesic, or more purposefully through 

resistance exercise (Gillis et al., 2018). These methods elicit similar sensations to those 

described above, and demonstrate ergogenic effects when applied repeatedly in response 

to an exercise stimulus too. Menthol application (4% cream) has been shown to facilitate 

muscular recovery (quantified via vertical jump performance; +1-5cm in comparison to 

placebo or control cream) following exercise induced muscle damage (Gillis et al., 2018), 

with authors unsure as to whether menthol accelerates recovery through enhanced tissue 

capabilities, motivational factors, motor unit recruitment, or factors not otherwise stated 

(Gillis et al., 2018). Further topical research is outlined in Chapter 4, but with respect to 
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endurance exercise it appears that unless menthol application is repeated and applied to a 

sufficiently thermosensitive area it is unlikely to be ergogenic. With menthol use following 

exercise that elicits muscle damage, worthwhile improvements in power production can 

occur, but the mechanism by which this is achieved may be contested. 

 

Figure 2-5 The effects of topical menthol application on factors related to temperature regulation. Note that 

topical menthol application (shown as a green body) may affect green highlighted factors, and may cause an 

elevation in Tcore but an overall increase in work may be observed and manifest in performance enhancement. 

Oral application of menthol as a mouth swill or co-ingested with physiological cooling 

strategies has been consistently shown to lower thermal sensation (Green, 1985; Schlader, 

S. R. Stannard and Mündel, 2011; Stevens, Thoseby, et al., 2016; Flood, Waldron and 

Jeffries, 2017; Jeffries, Goldsmith and Waldron, 2018), improve thermal comfort (O. R. 

Gibson, Wrightson and Hayes, 2018) and increase ventilation (Mündel and D. A. Jones, 

2009; Stevens, Bennett, et al., 2016). These effects are depicted in Figure 2.6, and may 

improve endurance performance either by improving TTE (Mündel and D. A. Jones, 2009; 

Flood, Waldron and Jeffries, 2017; Jeffries, Goldsmith and Waldron, 2018) or time trial 

performance (Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016); these effects 

have not been observed when oral menthol administration takes place during intermittent 

exercise (O. R. Gibson, Wrightson and Hayes, 2018), and interestingly are also not seen 

when menthol’s sensory counterpart capsaicin is swilled (O. R. Gibson, Wrightson and 

Hayes, 2018), although (commercial) reports of cramp prevention are made (Murray, 
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2017; Craighead et al., 2017). There are no known negative side-effects reported following 

menthol swilling, nor has oral menthol administration been shown to be ergolytic, but 

there are points of contention within the literature to date:  

Swills used in research have a range of dilution methodologies, and despite most studies 

employing the same concentration of menthol within the swill inconsistent dilution 

procedures likely mean that there are between participant differences in the concentration 

and qualitative characteristics of the swill they are receiving. At the chemical level this 

issue is evident as menthol is a natural alcohol and thus insoluble in water. Hence the need 

for investigation into the development of a swill that ensures a thorough and consistent 

dilution of menthol, at a known concentration. This may have advantages from a 

commercial point of view with respect to shelf life and the use of known quantities of 

ingredients, but also to sports nutrition practitioners who can arrange batch-testing of 

products for anti-doping purposes and more accurately monitor athletes’ responses to 

administration of different menthol concentrations, safe in the knowledge that 

concentration is the only factor being manipulated. 

Further, research to date has administered exercise tests that capture a limited range of 

exercise intensities and practices (i.e. session designs) with a preponderance of time to 

exhaustion papers, and supporting time trial performances. Cycling is typically studied 

due to the experimental control and ease of monitoring (e.g. power production as W). 

Whilst commendable efforts have been made to assess runners too (Stevens, Bennett, et 

al., 2016; Stevens, Thoseby, et al., 2016), the athletes in these investigations are only 

moderately trained and so transfer of findings to elite athletes is limited. A final 

consideration may be the capture of wider qualitative experiences of ergogenic strategy 

use, especially given that users of supplementation are more likely to respond to a placebo 

(Hurst et al., 2017a) and that athletes with strong beliefs in supplementation are more 

likely to respond following its administration (Beedie and Foad, 2009).   
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Figure 2-6 Schematic diagram highlighting the effects of menthol mouth swilling pertinent to temperature 

regulation
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CHAPTER 3 : TOPICAL AND INGESTED COOLING 

METHODOLOGIES FOR ENDURANCE EXERCISE 

PERFORMANCE IN THE HEAT1 

 

This systematic review and meta-analysis aimed to assess studies which have investigated 

cooling methodologies, their timing and effects, on endurance exercise performance in 

trained athletes (Category 3; VO2max ≥ 55 mL·kg·min−1) in hot environmental conditions 

(≥28 °C). Meta-analyses were performed to quantify the effects of timings and methods of 

application, with a narrative review of the evidence also provided. A computer-assisted 

database search was performed for articles investigating the effects of cooling on 

endurance performance and accompanying physiological and perceptual responses. A total 

of 4129 results were screened by title, abstract, and full text, resulting in 10 articles being 

included for subsequent analyses. A total of 101 participants and 310 observations from 

10 studies measuring the effects of differing cooling strategies on endurance exercise 

performance and accompanying physiological and perceptual responses were included. 

With respect to time trial performance, cooling was shown to result in small beneficial 

effects when applied before and throughout the exercise bout (Effect Size: −0.44; −0.69 to 

−0.18), especially when ingested (−0.39; −0.60 to −0.18). Current evidence suggests that 

whilst other strategies ameliorate physiological or perceptual responses throughout 

endurance exercise in hot conditions, ingesting cooling aids before and during exercise 

provides a small benefit, which is of practical significance to athletes’ time trial 

performance. 

 

3.1 Introduction 

Heat exposure imposes perceptual and physiological demands on athletes that can be 

attenuated by interventions; however, the precise timing and best method of administration 

for these remain unclear. Cooling strategies applied before (precooling) and during 

(percooling) exercise have been shown to ameliorate deleterious symptoms experienced 

whilst exercising in the heat (Bongers et al., 2014). Strategies to attenuate these factors are 

of importance given the increasingly global nature of elite endurance sports, and the 

 

1 The work presented in this chapter has been accepted for publication in Sports doi: 

10.3390/sports6010011 
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consequent scheduling demands placed upon athletes who often arrive at events with little 

time for heat-acclimatisation. 

Independent of the attenuation of physiological symptoms (Mündel and D. A. Jones, 2009; 

Cheung, 2010; Castle et al., 2012) improving perceptual symptoms of heat exposure (e.g. 

thermal comfort and strain) has been shown to improve exercise and cognitive 

performance (Schulze et al., 2015; Schmit et al., 2017). Recently, subjective measures of 

athlete wellbeing / fatigue have been shown to be more reliable and sensitive than objective 

indices in predicting performance, better reflecting acute and chronic training stresses 

(Saw, Main and Gastin, 2016). These findings highlight the importance of how an athlete 

feels in determining performance outcomes. This is likely due to an improved 

‘interoceptive state’ (A.D. Craig, 2003) whereby athletes’ physiological condition, 

motivation (A.D. Craig, 2003; Pageaux, 2014) and perception of effort (Swart et al., 2012) 

are positively affected due to sensations that are perceived to be beneficial in maintaining 

homeostasis or facilitating task completion (A.D. Craig, 2003; Swart et al., 2012). Hence 

cooling methodologies which display no physiological effect but improve psychological 

condition, may still be of value to the athlete with respect to performance.  

The emergence of contemporary precooling and percooling strategies, such as ice slurry 

and menthol mouth swilling, and ice slush ingestion ((Mündel and D. A. Jones, 2009; 

Riera et al., 2014; Schulze et al., 2015; Tran Trong et al., 2015; Stevens, Thoseby, et al., 

2016) have shown improvements in endurance capacity and performance, whilst also 

being highly practical (Siegel and Laursen, 2012). These strategies may be of most use in 

elite endurance athletes (Marino, 2002; Wegmann et al., 2012; Schulze et al., 2015) who 

face extended periods of heat exposure, often on successive days. Therefore, a meta-

analysis was conducted to assess the evidence for the performance effects of practical 

precooling and percooling strategies on well-trained endurance athletes, exercising in the 

heat. A meta-analysis permitted exploration and quantification of the magnitude of effect 

different cooling strategies and timings have upon physiological and perceived outcomes 

which pertain to endurance performance. 

 

3.2 Materials and Methods 

Articles investigating ingested and topical precooling and percooling strategies or a 

combination of both methodologies, were sourced from six online databases (BioMed 

Central, CINAHL, PlosOne, PubMed, SportDiscus and Web of Science). Reference lists 

of selected articles were also checked for relevant articles. Where full texts were not 

available from the University’s library, copies were requested from the British Library. 
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Four search terms were constructed by combining one of four independent variable search 

terms with a dependent variable term, using the Boolean operator AND. Each search term 

was performed in each database. The independent variable terms were as follows: 

Precooling OR pre-cooling OR “pre cooling” OR cooling; Cooling AND Exercise; 

“Cooling during Exercise”; Cooling AND “during Exercise”. The dependent variable term 

read: "Time Trial" OR "Time to Exhaustion" OR Power Output OR "Rating of Perceived 

Exertion". 

Included results were limited to full text journal articles written in English, published prior 

to 11 May 2017. Article titles and abstracts of search results were screened in accordance 

with exclusion criteria; full texts of the remaining articles were obtained and screened. 

Within- or between-subjects, repeated measures crossover and randomised controlled trial 

designs in healthy adults (male only or male and female participants, absent of spinal cord 

injury, within Performance Level 3 or better ((De Pauw and Roelands, 2013); pooled 

VO2max ≥ 55ml.kg.min-1)) conducted in temperatures ≥28°c were considered for inclusion. 

Ingested (cold water, ice slurry, menthol) and topical (cooling garments, ice packs, sprays) 

precooling, percooling and combined (precooling and percooling) methodologies were 

assessed. Only individual, non-ultra-endurance exercise modalities were considered 

(Cycling, running, swimming and triathlon completed within the confines of standardised 

competitive distances or training for such events). Outcome measures had to relate to 

aerobic exercise performance, with perceptual or physiological measures of heat also 

being reported. Studies were included on the condition that two reviewers (RB and SP) 

agreed they met the inclusion criteria. If there was disagreement between reviewers, then 

a third reviewer (NB) was consulted. 

The initial series of searches yielded 4129 results; after screening titles, abstracts and 

repeats, 43 full texts were obtained. These texts were reduced to 16 in accordance with the 

inclusion and exclusion criteria, which were then reduced to 11 upon further review 

(Figure 3.1). Data were obtained from authors prior to meta-analysis. Means and Standard 

Deviations from each study were calculated and used to quantify effect sizes (ES) with 

accompanying 90% confidence intervals (CI) using specialist software (Review Manager 

Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 

2014.) ES are described as follows:  Trivial: 0.0 - 0.2 Small: 0.2 – 0.6 Moderate: 0.6 – 1.2 

Large: 1.2 – 2.0 Very Large: 2.0 – 4.0 and Extremely Large: ≥4.0 (Hopkins, Marshall, 

Batterham and Hanin, 2009). 
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Table 3-1 Details of studies included for meta-analysis including participant number, timings, methods 

of cooling, exercise modality and study outcomes. 

Author Participants Timing Intervention Modality Outcomes 

Ross et al., 2011 11 Precooling Ice Cycling TT, PO, Trec, 

TC 

Ross et al., 2012 12 Precooling Ice + T, Ice + 

G + T 

Cycling TT, PO, RPE, 

TC 

Muñoz et al., 2012 10 Percooling OR, EXC, 

EXC + OR 

Running TT, Trec, TC, 

RPE 

Stanley et al., 2010 10 Percooling Ice, COOL Cycling TT, PO, Trec 

Stevens et al., 2013 9 Percooling Ice Triathlon/ 

Running 

TT, Trec, RPE, 

TC 

Stevens et al., 2015 11 Precooling

/ 

Percooling 

Ice, M Running TT, Trec, RPE, 

TS 

Stevens et al., 2017 9 Percooling M Running TT, Trec, RPE, 

TS 

Riera et al., 2014 12 Combined N, N + M, 

COOL, COOL 

+ M, Ice,  

Ice + M 

Cycling TT, TC, TS, 

RPE 

Tran Trong et al., 

2015 

10 Combined N + M, COOL 

+ M, Ice + M 

Cycling/ 

Running 

TT, TC, TS, 

RPE 

Schulze et al., 2015 7 Combined Ice, PC + Ice Cycling TT, PO, Trec, 

TC, TS 
Intervention Methodologies: COOL: cool liquid ingestion; EXC: external cooling via pouring cold water; 

G: glycerine; Ice: ice slurry ingestion; N: ambient temperature water; M: menthol; OR: oral rehydration; T: 

iced towels applied to participants. Outcome Variables: TT: time trial performance; PO: power output; RPE: 

rating of perceived exertion; Trec: rectal temperature; TC: thermal comfort; TS: thermal sensation. 
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Methodologies employed, as well as perceptual and physiological outcomes for each study 

are detailed in Table 3.1. Methodological quality of studies was assessed using the 

previously validated PEDro Scale (de Morton, 2009). A publication bias is acknowledged 

given the trained nature of the participants studied and the emphasis placed upon the 

practicality of the strategies under review. 

 

Figure 3-1 Flow chart to depict the study search, screening, and inclusion process. 
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3.3 Results 

3.3.1 General Findings 

Eleven studies, with a combined sample of 101 athletes (310 observations), were included 

for meta-analysis; participants had a pooled VO2max of 63.09 ± 4.55 mL·kg−1·min−1. Of 

the 10 studies included for meta-analysis 3 employed precooling, 5 percooling, and 3 

combined intervention timings; with 5 utilising topical, 7 ingested, and 3 combined 

cooling methodologies. PEDro Scoring revealed all studies to be of high quality (PEDro 

Score 6). We observed non-significant, low heterogeneity (Q = 11.06, (p = 0.92), I2 = 0%) 

across all studies. Raw differences (∆ performance; seconds) in time trial performances 

are presented in Table 3.2 

 

Table 3-2 Change in time trial performance of studies included for meta-analysis including timings and 

methods of cooling. 

Author Timing Intervention ∆ Performance (s) 

Ross et al., 2011 Precooling Ice −66.0 ± 29.4 

Ross et al., 2012 Precooling Ice + T  −18.6 ± 28.8 

- - Ice + G + T 0.0 ± 1.2 

Muñoz et al., 2012 Percooling OR −60.0 ± 81.0 

- - EXC −48.0 ± 85.2 

- - EXC + OR −63.0 ± 52.2 

Stanley et al., 

2010 
Percooling Ice −33.6 ± 60 

Stevens et al., 

2013 
Percooling Ice −72.0 ± 18.0 

Stevens et al., 

2015 
Precooling Ice 18.0 ± 12.0 

- Percooling M −42.0 ± 6.0 

Stevens et al., 

2017 
Percooling M −36.0 ± 6.0 

Riera et al., 2014 Combined N + M −49.8 ± 33.6 

- - COOL 36 ± 139.8 

- - COOL+M −162.6 ± 39.0 

- - Ice −121.2 ± 12.6 

- - Ice + M −232.8 ± 51.0 

Tran Trong et al., 

2015 
Combined COOL+M −136.2 ± 252.0 

- - Ice + M −283.2 ± 232.8 

Schulze et al., 

2015 
Combined Ice −23.4 ± 0.0 

- - Ice + T 4.8 ± 6.0 

Intervention Methodologies: COOL: cool liquid ingestion; EXC: external cooling via pouring cold water; 

G: glycerine; Ice: ice slurry ingestion; N: ambient temperature water; M: menthol; OR: oral rehydration; SC: 

scalp cooling; T: iced towels applied to participants. 
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3.3.2 Timing of Cooling Methods 

Mixed timings (a combination of precooling and percooling) were found to be the most 

effective timing with respect to time trial performance (Effect Size = -0.44; 90% 

Confidence Interval -0.69 to -0.18), with pre and percooling demonstrating trivial and 

small effects respectively. Power output was trivially improved by precooling (0.17; -0.18 

to 0.52) and percooling (0.16; -0.40 to 0.73), with no power output data reported for mixed 

timings. Percooling (-0.37; -0.65 to -0.10) and precooling (-0.42; -0.93 to 0.10) strategies 

demonstrated small reductions in rectal temperature, whereas precooling elicited a near 

moderate decrease (-0.59; -0.90 to 0.28). Effects upon perceptual measures were varied. 

Thermal comfort and sensation were found to be most receptive to percooling (1.29; -0.82 

to 1.76 and -0.60; -1.51 to 0.31 respectively). Small beneficial reductions in RPE were 

found following percooling (-0.39; -0.70 to -0.08) and mixed (-0.48; -0.75 to -0.22) 

timings, whereas precooling trivially influenced RPE (0.17; -0.18 to 0.52). 
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Figure 3-2 Forrest plot displaying the difference in time trial performance between the experimental group 

and control group for each individual case; (a) when employing differing cooling strategies and (b) when 

administering strategies at different time points. ES: Effect Size; ■: Mean response for an individual study; 

♦: Pooled effect size for included studies. 

3.3.2 Application of Cooling Methods 

Small improvements in time trial performance (-0.33; -0.52 to -0.14) and power output 

(0.22; -0.22 to 0.66) were seen following ingested cooling methodologies. Similarly, small 

effects were also observed in topical (-0.20; -0.94 to 0.53 and 0.34; -0.40 to 1.08, time trial 

performance and power output respectively) strategies, yet combined strategies showed 

trivial effects (-0.07; -0.44 to 0.29 and 0.02; -0.39 to 0.44, as above). Rectal temperature 

was most sensitive to ingested (-0.47; -0.68 to -0.26) methodologies presenting moderate 

effects. This was not supported by measures of thermal comfort for which large reductions 

were found following application of topical strategies (-1.35; -2.18 to -0.51); Thermal 

sensation was most sensitive to combined strategies (-0.36; -1.25 to 0.53). Topical (-0.50; 

-1.03 to 0.04) and ingested (-0.41; -0.61 to -0.20) methodologies induced small beneficial 

effects upon RPE with trivial effects found when combined strategies were applied (-0.13; 

-0.53 to 0.27). 

 

3.4 Discussion 

This meta-analysis aimed to assess the effects of practical precooling and percooling 

strategies applied to trained endurance athletes exercising in hot environmental conditions. 

Our main finding was that combining precooling and percooling timings has a cumulative 

beneficial effect upon endurance time trial performance, compared to when precooling and 

percooling are implemented in isolation (Figure 3.2a). Our secondary finding was that 
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ingested cooling methods outperform topical, or a combination of methods, suggesting 

method of delivery affects the performance enhancing capabilities of cooling interventions 

(Figure 3.2b). Therefore, when competing in the heat, we recommend ingesting cold 

liquids or ice slurries before and during competition. 

This contrasts the conclusions of recent analyses that have suggested precooling and 

percooling impart similar performance benefits (Bongers et al., 2014), and that combined 

or topical cooling methodologies are of most value to the athlete (Ross et al., 2013). Mixed 

timings show a greater effect in the reviewed studies (Figure 3.2a) than when precooling 

and percooling are performed independently, whereas Bongers et al. (2014) found similar 

effects between precooling and percooling (0.44 and 0.40, respectively). Bongers et al. 

(2014) state an absence of combined cooling timing research (mixed timings) but suggest 

that implementation of such strategies may prove effective. Our analysis clearly supports 

their suggestions. This may be a dose response relationship, as combined timings typically 

include a greater number of cooling exposures than when precooling or percooling is 

conducted in isolation. The timing of cooling exposures may also have physiological or 

practical implications, for example, possible interference with warm-up or call room 

procedures; it may be prudent for event organisers to maximise cooling opportunities in 

thermally challenging events. This may improve athletes’ performances, preserve athlete 

health (Cheung, Lee and Oksa, 2016), and reduce the prevalence of heat associated 

illnesses during such events (Racinais et al., 2015).  

The clear difference in findings between our and other reviews may also be attributed to a 

difference in what authors consider ‘performance’. We chose to review the effects of 

cooling on time trial performance, as this is a meaningful measure for endurance athletes. 

Other reviews (Tyler, Sunderland and Cheung, 2013; Bongers et al., 2014) have grouped 

endurance outcomes (time trial performance, distance completed, time to exhaustion, 

power output, etc.) under a broad definition of performance. Whilst cooling may produce 

similar effect statistics on differing endurance parameters, the tests implemented assess 

differing endurance functions (capacity vs. performance) (Stevens and Dascombe, 2015) 

and, importantly, display differing levels of repeatability (Hopkins, Schabort and Hawley, 

2001; Stevens and Dascombe, 2015). Similarly, failure to differentiate between cooling 

methodologies may cloud our understanding of the mechanisms driving performance 

enhancement. Such differentiation (Ross et al., 2013) may be of use in future studies that 

plan to tease out the differences between combined methodologies, and for practitioners 

who require variety in cooling strategies dependent upon athletes’ competitive 

environments and regulations.  
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Of the chosen methods, combining cooling timings demonstrated the greatest effect on 

rectal temperature (Small: −0.59; −0.90 to 0.28); however, the breadth of confidence 

interval suggests variability in the rate at which lowering of rectal temperature (Siegel et 

al., 2010) takes place, and subsequent accumulation of heat (Siegel et al., 2010; Bogerd et 

al., 2010; Stevens and Best, 2017)across the exercise duration. This variability likely 

occurs at an individual level, as all included trials were carried out in conditions exceeding 

the temperature at which metabolic heat production outweighs thermal transfer (Kenny 

and Jay, 2013). The intensity of precooling (Bogerd et al., 2010) and the subsequent rate 

of increase in rectal temperature following precooling (Siegel et al., 2010; Bogerd et al., 

2010) may contribute to the efficacy of precooling strategies. 

It is important to note that the ice slurries used in the majority of included precooling 

studies contained carbohydrate (Stanley, Leveritt and Peake, 2010; Ross, Garvican and 

Jeacocke, 2011; Ross et al., 2012; Stevens et al., 2013; 2016), which may have conveyed 

a physiological advantage beyond precooling alone, although it is acknowledged that the 

main purpose of carbohydrate in these beverages was to act as an antifreeze (Siegel et al., 

2011; Siegel and Laursen, 2012). The amounts of carbohydrate ingested in each study are 

in congruence with current recommendations for exercise lasting up to 2 hours (≤120g) 

(Jeukendrup, 2014) and so may have elicited ergogenic effects in these investigations.  

Percooling provided a small beneficial improvement in time trial performance (−0.21; 

−0.48 to 0.05), with all studies reporting a mean reduction in time trial performance, 

despite the use of ingested and topical methods (Stanley, Leveritt and Peake, 2010; Muñoz 

et al., 2012; Stevens et al., 2013; Schulze et al., 2015; Stevens et al., 2016; 2017). 

Differences in cooling methodology (ingested; topical) may evoke distinct responses, 

attributable to differing underpinning mechanisms, despite achieving a uniform effect 

upon time trial performance when applied throughout the exercise bout. Ingested 

percooling methods may initially impart perceptual feelings of freshness through 

stimulation of the cold and menthol sensitive TRPM8 receptors (Patel, Ishiuji and 

Yosipovitch, 2007; Schepers and Ringkamp, 2010). Strategies containing menthol 

improved time trial performance to a greater extent than non-menthol containing 

counterparts in a temperature dependent manner (Riera et al., 2014; Tran Trong et al., 

2015). Menthol has also demonstrated improvements in time trial performance and time 

to exhaustion when used as a mouth rinse (Mündel and Jones, 2009; Stevens et al., 2016), 

suggesting that the refreshing sensation or perceptual cooling experienced by an athlete 

may further enhance the wider physiological effects observed in other percooling studies, 

especially when isolated to the oral cavity (Stevens and Best, 2017).  
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Ingested cooling strategies may also act as a thermal buffer, attenuating a rise in rectal 

temperature, whereby gastrointestinal temperature is reduced prior to exercise 

commencing (heat sink; Siegel and Laursen, 2012; Riera et al., 2014). Furthermore, it is 

hypothesised that ice ingestion may cause a mismatch between core and brain 

temperatures, where the brain perceives the lower local temperature as a greater heat sink 

than that which has been induced at the core (Siegel and Laursen, 2012; Laursen, 2016). 

Greater metabolic heat production is then permitted due to this perceived difference, 

evidenced by the ‘overshoot’ in rectal temperature seen at exercise termination in some 

ice ingestion studies (Siegel et al., 2010; 2011). Percooling, on the other hand, may permit 

an initial beneficial rise in core temperature and resultant physiological responses prior to 

a subsequent dampening of any potentially limiting effects. Percooling may also alleviate 

subjective thermal measures over a more prolonged duration compared to precooling 

because of repeated exposures to cold stimuli. This cannot be confirmed by the included 

studies due to the difference in time trial durations between precooling and percooling 

conditions. Ingested cooling strategies consumed across the entire exercise window 

therefore strike a balance between attenuating physiological symptoms and perceptual 

sensations, especially when combined with menthol at lower temperatures (Riera et al., 

2014; Tran Trong et al., 2015). If athletes cool the oral cavity during exercise, using cool 

liquid, ice, or even menthol, as in the works of Riera and Tran Trong (Riera et al., 2014; 

Tran Trong et al., 2015), cold receptors are stimulated in the oral cavity, conferring a 

hedonic effect and possibly satiating thirst (Eccles, 2000; Eccles et al., 2013). Satiating 

thirst may also reduce the likelihood of gastrointestinal distress associated with ingesting 

large volumes of liquid, particularly when running (Lambert et al., 2008). The role of 

menthol in facilitating ingested cooling methodologies also warrants further investigation 

(Stevens and Best, 2017). 

Topical percooling lowers skin temperature, inducing cutaneous vasoconstriction and 

increasing the temperature gradient between the skin and the external environment in hot 

conditions (Cheuvront and Haymes, 2001). This mechanism permits convective and 

radiative heat exchange up to temperatures of 36 °C (Cheuvront and Haymes, 2001), 

beyond which evaporative cooling becomes the main method of body temperature 

regulation. Dry, windy conditions that promote convection and evaporation (Morris and 

Jay, 2016) are required for topical cooling to be most effective. The included topical 

percooling studies (Muñoz et al., 2012; Schulze et al., 2015) present practical ways of 

cooling athletes that are less cumbersome than typical precooling strategies, namely 

pouring cold water over the body and the application of cold towels. Both methods could 
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be easily transported in a cool box and kept roadside or trackside. The pouring of cold 

water is especially valid and practical, with many athletes already doing so in competition 

(Morris and Jay, 2016; Filingeri, 2016).  

Skin wetness may also be important in cooling and is influenced by factors pertinent to 

athlete comfort during endurance exercise in the heat, such as humidity and airflow over 

the skin (Filingeri, 2016). In the absence of airflow over the skin, topical and combined 

methodologies applied within lab conditions improve thermal comfort and sensation by 

providing targeted stimuli that aggressively reduce local skin temperatures (Bongers et al., 

2014). Some topical methods may promote skin wetness (cold water and/ or towels) and 

therefore facilitate evaporative cooling, whereas others (ice vests) stimulate large, cold-

sensitive areas such as the chest and back (Wendt, van Loon and Lichtenbelt, 2007; Bogerd 

et al., 2010; Eijsvogels et al., 2014; Filingeri, 2016), and reduce skin temperature very 

quickly, all important factors in improving thermal perceptions (Wendt, van Loon and 

Lichtenbelt, 2007). 

Although no positive effects on time trial performance or power output were noted 

following topical or combined strategies, performance did not worsen either ((Stanley, 

Leveritt and Peake, 2010; Ross et al., 2012; Schulze et al., 2015); Table 3.2). There may 

be occasions where an attenuation of an athlete’s perception of thermal state is beneficial, 

provided performance does not deteriorate (e.g., a domestique in the Tour de France, who 

must maintain a consistent level of performance over 21 days of riding, in rapidly changing 

thermal circumstances, with his performance tasks altering depending on the needs and 

strategies of his team day by day). 

We found combining topical and ingested cooling methods to only have a trivial effect 

upon time trial performance with a broad confidence interval (−0.07; −0.44 to 0.29), 

supported by an expectedly trivial change in power output (0.02; −0.39 to 0.44). Combined 

cooling methods do, however, markedly lower rectal temperature whilst also improving 

thermal comfort and sensation, although they may inhibit physiological processes 

facilitative to endurance performance in the heat, such as increased vasodilation, muscular 

or skin blood flow, and sweating (Ouzzahra, Havenith and Redortier, 2012). The moderate 

reduction in rectal temperature seen when combining methodologies likely results in an 

insufficient temperature gradient between the core and skin, dampening the performance 

enhancing effects either treatment would promote in isolation. The breadth of the 

confidence intervals around the trivial performance effects of combined cooling 

methodologies may be explained in part by the individual, and regional variation in these 
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physiological responses, as well as the heterogeneity of study designs (Hopkins and 

Hewson, 2001; Hopkins, 2005; Stevens and Best, 2017). 

The range of observed responses, as evidenced through broad confidence intervals, suggest 

that the timing and methodology employed can affect athletes’ performances differently, 

and, more importantly, that differing strategies may target different mechanisms (i.e., a 

reduction in either perceived (Mündel and Jones, 2009; Stevens et al., 2016; 2017; Stevens 

and Best, 2017) or physiological thermal load (Stanley, Leveritt and Peake, 2010; Ross et 

al., 2012; Stevens et al., 2013; Gonzales et al., 2014; Stevens et al., 2016; 2017), or both 

(Riera et al., 2014; Tran Trong et al., 2015)). Each targeted mechanism(s) likely possesses 

differing levels of intra- and inter-individual variability, and this may further vary between 

investigations, as per Figure 3.2 and Table 3.2. Quantifying the coefficient of variation in 

athletes’ performances and associated measures (e.g., thermal comfort or sensation) is an 

important step in assessing the efficacy of an intervention. If an intervention produces a 

change that is greater than the coefficient of variation observed in an individual or group, 

it can be deemed to have had an effect. Several papers provide a good starting point for 

this analysis in cycling (Zavorsky et al., 2007), running (Hopkins and Hewson, 2001; 

Hopkins, 2005; Hurst and Board, 2016), and triathlon (Paton and Hopkins, 2005), and 

Atkinson and Nevill (2001) provide a working example for the practitioner. 

Finally, although beneficial in acute settings, little is known about the long-term 

application of cooling interventions in the absence of heat acclimation. Repeated exposure 

to extremes of temperature may be detrimental to long-term health (Cheung, Lee and Oksa, 

2016), and if cooling strategies are employed to repeatedly facilitate such exposure over 

the course of a season or training cycle then athlete health should be monitored 

accordingly. 

 

3.4.1 Conclusion 

We found that ingested cooling methodologies show ecologically important small 

improvements in time trial performance when applied before and during endurance 

exercise bouts (Figure 3.2; Table 3.2). Improvements in time trial performance and power 

output may be attributable to differing mechanisms (perceptual or physiological cooling) 

depending upon the cooling strategy being administered (Wegmann et al., 2012); further 

elucidation of these mechanisms and their effects upon performance and long-term health 

is still required (Flouris and Schlader, 2015; Roelands, De Pauw and Meeusen, 2015). 

Carbohydrate provision may be a confounding but contributory factor with respect to the 

investigation of cooling strategies as a means of performance enhancement. 
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When choosing a cooling strategy, we urge practitioners to consider the strategy’s effects 

holistically, assessing athletes’ perceptual and physiological responses to cooling in 

training prior to competition. Optimal frequency and timing of cooling strategies is likely 

a convergence of athletes’ responses to cooling interventions and sport-specific statutory 

limitations (e.g., number of feed stations). Simply providing athletes with cool or cold 

water before and during events allows for athletes to ingest, swill, or pour the liquid over 

themselves, and therefore is a useful first step for providing cooling interventions. If 

practitioners can provide athletes with ice slurries for ingestion, this would likely further 

improve performance by ameliorating thermal comfort and sensation, and an attenuation 

of core temperature—the addition of menthol may support these effects.  
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Chapter 4 : MENTHOL: A FRESH ERGOGENIC AID FOR 

ATHLETIC PERFORMANCE2 

 

The application of menthol has recently been researched as a performance enhancing aid 

for various aspects of athletic performance including endurance, speed, strength and joint 

range of motion. A range of application methods has been used including a mouth rinse, 

ingestion of a beverage containing menthol or external application to the skin or clothing 

via a gel or spray. The majority of research has focused on the use of menthol to impart a 

cooling sensation on athletes performing endurance exercise in the heat. In this situation, 

menthol appears to have the greatest beneficial effect on performance when applied 

internally. In contrast, the majority of investigations into the external application of 

menthol demonstrated no performance benefit. While studies are limited in number, 

menthol has not yet proven to be beneficial for speed or strength, and only effective at 

increasing joint range of motion following exercise that induced delayed onset muscle 

soreness. Internal application of menthol may provoke such performance enhancing 

effects via mechanisms related to its thermal, ventilatory, analgesic and arousing 

properties. Future research should focus on well-trained subjects and investigate the 

addition of menthol to nutritional sports products. 

 

4.1 Introduction 

The role of the brain in the regulation of exercise performance has received increasing 

attention across the last decade (Noakes, 2011). Opinion remains divided as to whether 

regulation occurs exclusively at the neurological level (Gibson and Noakes, 2004) or if 

interactions between various physiological and psychological feed-forward and feedback 

mechanisms to generate an athlete’s feelings of self (Craig, 2003) and as such, fatigue 

whilst exercising (Marino, Gard and Drinkwater, 2009). What has been repeatedly 

demonstrated, however, is that physical performance can be modified through 

interventions acting exclusively on the central nervous system, for example, music 

(Karageorghis and Priest, 2012) experimenter sex (Lamarche, Gammage and Gabriel, 

2011) and time or performance deception (H. S. Jones et al., 2013). Various mouth rinsing 

techniques may also be performance enhancing, which involve briefly exposing the oral 

 

2 The work presented in this chapter has been accepted for publication in Sports Medicine 

doi: 10.1007/s40279-016-0652-4. 
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cavity to a stimulus (e.g. carbohydrate, caffeine, menthol) with the intention to induce 

afferent feedback to the brainstem that may ameliorate fatigue (Burke and Maughan, 

2014).  

Carbohydrate mouth rinsing has been the main strategy studied to date, with it being 

postulated that the brief exposure of carbohydrate to the oral cavity elicits neurological 

responses associated with imminent nutrient availability (Simon et al., 2006), reward 

(Chambers, Bridge and D. A. Jones, 2009) and motor output (Chambers, Bridge and D. A. 

Jones, 2009). These findings led to the emergence of other mouth rinsing strategies (Burke 

and Maughan, 2014) including menthol (Mündel and D. A. Jones, 2009). A menthol mouth 

rinse is used to impart sensations of coolness, freshness and nasal patency through 

stimulation of the trigeminal nerve (Naito et al., 1997; Eccles, 2000) and as an agonist to 

the TRPM8 channel which serves as a cold temperature sensor (Patel, Ishiuji and 

Yosipovitch, 2007). These mechanisms and resultant sensations explain menthol’s prolific 

use as a flavouring and fragrance agent in confectionary and medications (Eccles, 1994). 

 

Considering hotter perceptions of thermal sensation and discomfort negatively affect 

endurance exercise performance (Schlader et al., 2011) and menthol has a perceptual 

cooling effect (Eccles, 2000), it may be useful as an ergogenic aid for athletic performance, 

especially in hot environmental conditions (Stevens, Taylor and Dascombe, 2016). 

Additionally, menthol has been proposed as a cooling and analgesic compound useful for 

application on injured and/or sore muscles, to promote recovery and enhance subsequent 

contraction force (Johar et al., 2012) With a vast range of application methods, dosages, 

exercise protocols and performance outcomes however, the beneficial effect of menthol 

on athletic performance seems equivocal. Hence, the current review aims to provide 

recommendations for athletes using menthol to enhance athletic performance. The 

psychophysiological mechanisms of action will also be explored and directions will be 

provided for future research.     

 

4.2 Literature Search Methods 

Searching was carried out within the databases PubMed and Scopus up to October, 2016. 

Search terms included menthol, L-menthol, mint, peppermint, counterirritant, cooling, 

exercise, performance and thermal sensation. Inclusion criteria stipulated that 

investigations must be written in English and have implemented a menthol-based 

intervention on a measured aspect of athletic performance. Subjects of all abilities were 
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included and while the majority of studies were performed in a hot environment (>30°C), 

investigations performed in neutral-warm environments (20-30°C) were also included. 

 

4.3 Menthol and Athletic Performance 

To date, the use of menthol as an ergogenic aid for athletic performance has taken the form 

of a mouth rinse (Stevens, Thoseby, et al., 2016), an additive to other beverages (Riera et 

al., 2014; Tran Trong et al., 2015) or as a gel or spray applied externally to the skin or 

clothing (Kounalakis et al., 2010; Barwood et al., 2015). Hence, it is either applied 

internally or externally. Importantly, the degree of the cooling sensation from menthol to 

a body area correlates inversely with the thickness of the stratum corneum, where a thicker 

stratum corneum is a more difficult barrier to penetrate (Watson et al., 1978). The density 

of cold-sensitive afferents on a particular body segment will also influence the degree of 

the cooling sensation from menthol application. Hence, for the same menthol dose, the 

tongue and oral cavity are more sensitive to menthol in comparison to the torso (Watson 

et al., 1978) and as such, the effects of menthol application on the oral cavity (internal) 

will be discussed separately to application on the skin (external). 

 

4.3.1 Internal Application of Menthol and Athletic Performance 

A summary of research determining the effect of internal menthol application on physical 

capacity and performance appears in Table 4.1. A novel strategy is to simply rinse (or 

swill) the mouth with a liquid menthol solution prior to spitting out the solution. In the 

first study of its kind, a menthol mouth rinse (25 mL at a concentration of 0.01% performed 

every 10 min) significantly improved cycling time to exhaustion by 9% (Mündel and D. 

A. Jones, 2009). The researchers also observed significantly increased expired air volume, 

highlighting a greater drive to breath and/or lowered airway resistance, as well as a lower 

rating of perceived exertion. Similar findings have also been observed within running time 

trials in the heat, where menthol mouth rinse (25 mL at a concentration of 0.01% 

performed every 1 km) significantly improved 5 km performance time by 3% (Stevens, 

Thoseby, et al., 2016) and 3 km performance time by 3.5% when combined with a facial 

water spray (Stevens, Bennett, et al., 2016). Across these studies, significantly increased 

expired air volume was also observed alongside significantly cooler thermal sensation 

(Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016). Notably, the use of a 

menthol mouth rinse performed during exercise, whether combined with facial water spray 

or not, was significantly more beneficial for running time trial performance in the heat 

compared to the use of well established pre-cooling strategies (Stevens, Bennett, et al., 
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2016; Stevens, Thoseby, et al., 2016). As such, a menthol mouth rinse performed 

intermittently during exercise appears to be an effective intervention to improve endurance 

exercise performance in the heat.   

Two promising investigations on internal menthol application and endurance performance 

have involved ingesting a menthol-aromatized beverage (Riera et al., 2014; Tran Trong et 

al., 2015). Riera et al., (2014) performed several comparisons of different menthol-

aromatized beverages that were ingested prior to and every 5 km during a 20 km cycling 

time trial in the heat. Menthol-aromatized beverages at 23°C, 3°C and ice slurry at -1°C 

were compared to a beverage of the same volume and temperature without menthol (Riera 

et al., 2014). The addition of menthol to the 3°C beverage significantly improved 

performance time by 9%, while no significant differences were observed in the other 

conditions. Importantly, however, menthol-aromatized ice slurry was the most beneficial 

intervention compared to a 23°C control beverage without menthol. Similar studies out of 

the same laboratory have also demonstrated that the combination of menthol and ice slurry 

significantly improved performance in a simulated duathlon in hot conditions compared 

to other beverages also containing menthol at 28°C and 3°C, by 6% and 3%, respectively 

(Tran Trong et al., 2015). Hence, the addition of menthol to a beverage ingested 

immediately prior to and during endurance exercise has a performance enhancing effect, 

and like the menthol mouth rinse, this strategy is not further enhanced by pre-cooling 

(Riera et al., 2016). For the best outcome, menthol should be added to an ice slurry mixture 

to maximize cooling. Practically, however, recent research has demonstrated that when 

given the choice, athletes drink less ice slurry than cold fluid during a cycling time trial, 

which may contribute to deteriorated performance and feeling state (Maunder, Laursen 

and Kilding, 2016).  

Other investigations into menthol ingestion and sports performance have taken the form 

of peppermint ingestion, which typically contains a high concentration of menthol 

(Sönmez et al., 2010; Meamarbashi and Rajabi, 2013; Meamarbashi, 2014). No 

performance improvements were gained in an outdoor 400 m running time trial following 

the ingestion of 5 mL·kg-1 of peppermint extract (50 g of dried mint infused into 1 L of 

water for 15 min) (Sönmez et al., 2010). Hence, this initial study suggests menthol may 

not be an effective aid for such short duration activity, but more research is needed to 

confirm this notion. Other studies to investigate the use of peppermint ingestion as a pre-

exercise ergogenic aid (Meamarbashi, 2014) or an oral supplement consumed every day 

for 10 days (Meamarbashi and Rajabi, 2013) were tarnished by failing to implement a 

cross-over design or failing to include a control trial, respectively.
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Table 4-1 Summary of research determining the effect of internal menthol application on physical capacity and performance. 

Investigation Ambient 

Conditions 

Subjects Menthol Application Method Protocol Outcome 

Mundel and Jones 

(2009) 

34°C, 27% 

RH 

9 males, VO2max = 54 

± 5 mL·kg-1·min-1 

Menthol mouth rinse (25 mL at 0.01% 

every 10 min) 

Cycling TTE at 65% 

VO2max 

↑ TTE by 5 min (9%) 

↑ VE, ↓ RPE 

Sönmez et al. 

(2010) 

NR 16 (sex NR), untrained Oral mint extract (5 mL·kg) ingested prior 

to performance test 

Running TT of 400 m ↔ Perf time 

↓ BLa, ↔ muscle pain 

Riera et al. (2014) 31°C, 78% 

RH 

12 males, VO2max = 

60 ± 10 mL·kg-1·min-1 

Ingestion of beverage with/without 

menthol (190 mL at 0.05% 3 x prior and 

every 5 km during exercise) at a) 23°C; b) 

3°C; or c) -1°C ice slurry 

15 min cycle at ventilatory 

threshold one then 20 km TT 

a) ↔ Perf time 

b) ↑ Perf time by 3 min (9%) 

c) ↔ Perf time 

↔ HR, RPE, TC or TS 

Tran Trong et al. 

(2015) 

28°C, 57% 

RH 

10 males, VO2max = 

59 ± 11 mL·kg-1·min-1 

Ingestion of a menthol aromatized 

beverage (190 mL at 0.05% during WU, 

every interval and recovery) at a) 3°C; or 

b) 0.2°C ice slurry, compared to 28°C 

fluid 

15 min cycle WU then 5 x 

intervals of (4 km cycle and 1 

km running TT) 

a) ↔ Perf time 

b) ↓ Perf time by 5 min (6%) and 

↓ perf time by 2 min (3%) 

compared to ‘a’ 

↔ HR, RPE, TC or TS 

Stevens et al. 

(2016) 

33°C, 46% 

RH 

11 males, 5 km run 

time of 18-22 min 

Menthol mouth rinse (25 mL at 0.01% 

every 1 km) 

10 min walk/run on NMT 

then running TT of 5 km on 

NMT 

↓ Perf time by 0.7 min (3%)  

↓ TS, ↑ VE, ↑ PRL, ↔ SR 

Stevens et al. 

(2016) 

33°C, 47% 

RH 

11 males, VO2max = 

61 ± 6 mL·kg-1·min-1 

Menthol mouth rinse (25 mL at 0.01% 

every 4 min/1 km) and facial water spray 

(every 4 min/1 km) 

20 min run at 70% VO2max 

on NMT then running TT of 

3 km on NMT 

↓ Perf time by 0.5 min (3.5%)  

↓ TS, ↓ TF, ↓ PRL, ↑ VE, ↔ SR 
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Riera et al. (2016) 

WBGT: 

29°C, 80% 

RH 

9 males, VO2max = 59 

± 11 mL·kg-1·min-1 

Ingestion of menthol aromatized ice 

slurry during exercise (7 mL·kg at 0.03%) 

with vs. without pre-cooling with cold 

water (7 mL·kg at 3°C) 

10 min cycle at ventilatory 

threshold one then 30 km 

time trial 

↔ Perf time 

↔ TS, TC, HR, RPE, TCORE 

 

↔ = no change, BLa = blood lactate concentration, HR = heart rate, NMT = non-motorized treadmill, NR = not reported, perf = performance, PRL = blood prolactin concentration, RH 

= relative humidity, RPE = rating of perceived exertion, SR = sweat rate, TC = thermal comfort, TCORE = core temperature, TF = forehead temperature, TS = thermal sensation, TT = time-

trial, TTE = time to exhaustion, VE = volume of expired air, VO2max = maximal oxygen uptake, WBGT = wet blub globe temperature, WU = warm-up. 
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Table 4-2 Summary of research determining the effect of external menthol application on physical capacity and performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

↔ = no change, DOMS = delayed onset muscle soreness, EF = evoked force, NR = not reported, MVC = maximal voluntary contraction, perf = performance, RH = relative humidity, 

RPE = rating of perceived exertion, TC = thermal comfort, TS = thermal sensation, TT = time-trial, TTE = time to exhaustion, WU = warm-up. 

 

 

Investigation Ambient 

Conditions 

Subjects Menthol Application Method Protocol Outcome 

Schlader et al. 

(2011) 

20°C, 48% RH 12 males, untrained Topical application of menthol gel on the 

face (0.5 g·100 cm2 at 8% prior to 

protocol) 

Cycling TTE RPE clamp 

protocol at 16 ‘hard-very 

hard’ 

↑ Total work by 39 kJ (21%) 

↓ TS, ↑ TC 

Topp et al. (2011) NR 9 males, 8 females, 

untrained 

Topical application of menthol gel on the 

right forearm (3.5 g total: 0.5 g·100 cm2 

at 3.5% 20 min prior to protocol) 

30 repeated maximal 

flexions and extensions of 

the wrists at 30°·s 

↔ Muscle strength 

↓ Blood flow in radial artery 

Johar et al. (2012) NR 12 males, 4 females, 

untrained 

Topical application of menthol gel on the 

Biceps Brachii (2 g total: 0.5 g·100 cm2 at 

3.5% 20 min prior to protocol) 

MVC and EF of the elbow 

flexors 48 h post DOMS 

inducing exercise 

↔ MVC or EF 

↓ Perception of DOMS 

Barwood et al. 

(2012) 

32°C, 50% RH 11 males, 40 km 

cycle time < 70 min 

Menthol sprayed on the cycling jersey 

(106 mL at 0.05% between WU and TT) 

Cycling TT of 40 km ↔ Perf time 

↓ TS, ↑ TC 

Barwood et al. 

(2014) 

34°C, 50% RH 6 males, untrained Menthol sprayed on the running top (100 

mL at 0.05% between pre-load and TT) 

15 min fixed intensity pre-

load run then 5 km TT 

↔ Perf time 

↓ TS, ↑ TC 

Barwood et al. 

(2015) 

34°C, 33% RH 8 males, untrained Menthol sprayed on the cycling jersey 

(100 mL at 0.2% after 10 km of TT) 

Cycling TT of 16.1 km  ↔ Perf time 

↓ RPE, ↓ TS, ↑ TC 
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4.3.2 External Application of Menthol and Athletic Performance 

A summary of research determining the effect of external menthol application on physical 

capacity and performance appears in Table 4.2. Half of these investigations have involved 

the spraying of a menthol solution onto the exercise clothing either prior to (Barwood et 

al., 2012; Barwood, Corbett and White, 2014) or during an endurance exercise time trial 

(Barwood et al., 2015). Spraying a menthol solution on the exercise clothing at a 

concentration of 0.05% resulted in no improvements in 40 km cycling time trial 

performance (Barwood et al., 2012) or 5 km running time trial performance (Barwood, 

Corbett and White, 2014) despite significantly cooler thermal sensation and improved 

thermal comfort in both instances. The spray was also ineffective when the menthol 

solution was more concentrated (0.2%) and implemented at the 10 km mark of a 16.1 km 

cycling time trial, despite lower ratings of perceived exertion, cooler thermal sensation and 

improved thermal comfort (Barwood et al., 2015). Only one study has demonstrated a 

beneficial performance effect of an external menthol application when a menthol gel at 

8% concentration was applied to the face in a volume of 0.5 g·100 cm2 (Schlader et al., 

2011). This intervention increased total work completed by 21% in a cycling time to 

exhaustion protocol at a fixed rating of perceived exertion and was also accompanied by 

significantly cooler thermal sensation and improved comfort. As such, the external 

application of menthol may need to be applied directly to the face, or at least directly to 

the skin at a high concentration in order to have an ergogenic effect. It should be noted, 

however, that the perceptually driven protocol may be more likely to be affected by an 

intervention designed to influence perception and hence, further investigation into the 

application of menthol on the face is needed. 

Other investigations that have applied a menthol gel directly to the skin have assessed the 

effects on muscle strength (Johar et al., 2012; Topp et al., 2011) and joint range of motion 

(Akehi and Long, 2013; Haynes and Perrin, 1992). A menthol gel applied to the forearm 

at a concentration of 3.5% and a volume of 0.5 g·100 cm2 did not improve isokinetic 

muscle strength 20 minutes after application (Topp et al., 2011) Similarly, a menthol gel 

with the same concentration and volume applied to the biceps brachii did not improve 

maximal voluntary contraction or evoked force of the elbow flexors 20 minutes after 

application and 48 hours after exercise that induced delayed onset muscle soreness (Johar 

et al., 2012). In regards to joint range of motion, one investigation demonstrated that 

application of a 2% menthol gel increased range of motion of the elbow joint following an 

eccentric exercise protocol to induce delayed onset muscle soreness (Haynes and Perrin, 

1992), however, application of a 16% menthol gel did not affect hamstring range of motion 
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in absence of preceding eccentric exercise (Akehi and Long, 2013). Therefore, the use of 

a topical menthol gel appears to have little influence on muscle strength and joint range of 

motion in the recovered state. 

 

4.4 Mechanisms of Action 

The application of menthol for the improvement of endurance performance in the heat has 

been proposed to induce several psychophysiological adjustments including thermal 

(Gillis et al., 2016), ventilatory (Stevens, Thoseby, et al., 2016), analgesic (Johar et al., 

2012) and arousal effects (Smith and Boden, 2013).  

 

4.4.1. Thermal Effect 

Improved feelings of thermal comfort and sensation are observed when menthol is applied 

topically (Schlader et al., 2011; Barwood et al., 2012; Barwood, Corbett and White, 2014; 

Barwood et al., 2015) and when administered orally (Stevens, Thoseby, et al., 2016; 

Stevens, Bennett, et al., 2016). Researchers investigating topical application of menthol 

often apply garments that have been treated with low concentration menthol solutions. 

This facilitates evaporative cooling and stimulation of cold receptors by placing the 

garment and menthol in contact with large, cold sensitive areas such as the chest and back 

(Filingeri, 2016). Specifically, the solvent (typically water and alcohol) evaporates as a 

result of an increased rate of heat production and skin temperature during exercise, whilst 

menthol stimulates cold sensitive TRPM8 receptors, creating a subjective feeling of 

coolness (Eccles, 2000a). Menthol has, however, also been shown to promote a heat 

storage response during exercise (Gillis, House and Tipton, 2010; Gillis et al., 2016) and 

at rest (Valente et al., 2015) due to perturbed sweat rate (Kounalakis et al., 2010) and 

vasoconstriction of blood vessels (Valente et al., 2015; Gillis et al., 2015). These 

thermoregulatory responses may explain why topical application of menthol is not 

beneficial for endurance performance in the heat when applied to large areas, prior to or 

during an intense and prolonged bout of exercise (Valente et al., 2015). When menthol is 

applied to smaller areas, such as the face, these physiological responses are not observed, 

yet cooler thermal sensation and improved thermal comfort still occur(Schlader et al., 

2011). However, the disassociation between the physiological and perceptual responses to 

body heat from topical menthol application presents an ethical consideration for 

researchers, as it may permit exercise beyond normal thermal limits and an increase in the 

stress hormone prolactin (Stevens, Thoseby, et al., 2016). Application of menthol close to 

the onset of hyperthermia should be avoided to allow perception of symptoms associated 
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with high levels of heat stress, adjustment to self-selected exercise intensity and the 

prevention of heat injury. 

 

When administered orally, menthol evokes pleasant and refreshing sensations of airflow 

and nasal patency, improving thermal comfort and sensation by acting as an afferent to the 

palatine and trigeminal nerves (Eccles, 1994; Valente et al., 2015). Despite performance 

improvements with oral menthol supplementation when used in conjunction with other 

cooling methods, thermal perception was not cooler in protocols performed outside of the 

laboratory (Riera et al., 2014; Tran Trong et al., 2015). Such a finding suggests that in the 

presence of airflow, oral application of menthol improves performance by mechanisms 

beyond improvements in thermal perception. 

 

 

4.4.2. Ventilatory Effect 

Menthol consistently increases ventilation in the form of expired air volume (Mündel and 

D.A. Jones, 2009; Stevens, Bennett et al., 2016; Stevens, Thoseby et al., 2016)  when 

administered as a liquid mouth rinse (0.01%) with concomitant improvements in running 

performance (Stevens, Bennett et al., 2016; Stevens, Thoseby et al., 2016) and cycling 

time to exhaustion (Mündel and D.A. Jones, 2009). While at rest, oral application of 

menthol inhibits the drive to breathe (Eccles, 2000) and deceases the discomfort 

experienced during breathing with a restrictive load (Nishino, Tagaito and Sakurai, 1997), 

serving to reduce ventilation (Fisher, 2011). Therefore, since exercise increases the 

ventilatory requirements of the body, at times to a near maximal level (Blackie et al., 

1991), oral administration of menthol during exercise can lower perceived 

cardiopulmonary exertion (Mündel and D.A. Jones, 2009) which may allow an overall 

greater depth and/or rate of breathing. However, there is no evidence that menthol has the 

capacity to decrease physical airway resistance (Naito et al., 1997; Kenia, Houghton and 

Beardsmore, 2008), suggesting the effect is perceptual only (Nishino et al., 1997; Pereira, 

Sim and Driver, 2013).   

 

4.4.3. Analgesic Effect 

Menthol has been used for medicinal purposes since ancient times (Patel et al., 2007) and 

more recently, it has been suggested to have an analgesic effect for sports injuries, delayed 

onset muscle soreness and arthritis (Eccles, 1994; Johar et al., 2012) and hence its 

inclusion in many topical creams to reduce musculoskeletal pain. Aside from its cooling 
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effect through the TRPM8 channel, menthol has been demonstrated to inhibit the TRPA1 

channel, a mediator of inflammatory pain (Macpherson et al., 2006) While topical 

application of menthol (3.5%) decreased perceived pain and improved physical function 

in patients with knee osteoarthritis (Topp, Brosky and Pieschel, 2013), research to date has 

not investigated the analgesic effects of menthol during exercise in athletes.  

 

4.4.4. Arousal Effect 

Menthol has also been suggested to have arousing properties similar to the feeling of cold 

air on the face when drowsy (Eccles, 2000). Chewing menthol gum has been associated 

with improved mental alertness (Smith and Boden, 2013) and breathing a menthol 

fragrance through a mask increased vigilance in a sustained visual attention task (Warm, 

Dember and Parasuraman, 1991). In contrast however, chewing on a menthol lozenge 

failed to enhance mood ratings of alertness, hedonic tone and tension during simulated 

firefighting in the heat (Zhang et al., 2014). As such, further research is needed to 

determine if arousal plays a role in the improvement of endurance exercise performance 

in the heat from internal menthol application.  

 

4.5. Practical Recommendations 

Endurance athletes competing in the heat are recommended to experiment with internal 

menthol application methods both pre-and mid-exercise. This may take the form of a 

mouth rinse or a beverage containing menthol by adding 0.1-0.5 g of crushed menthol 

crystals, dissolved in alcohol, to 1 L of water. Alternatively, a pre-mixed L-

menthol/alcohol solution that is available commercially as a food additive can be used in 

the same quantity. Athletes should experiment with different concentrations of menthol in 

their beverages to find individual limits that are both tolerable and beneficial to 

performance. Indeed, all attempts at internal menthol application should be trialled 

thoroughly within mock competition scenarios at race intensities to ensure no adverse 

consequences are to occur in a race situation.   

 

4.6. Directions for Future Research 

To improve translation for athletes, future research into menthol and sports performance 

should recruit well-trained subjects. Only half of the investigations presented in Tables 1-

2 used trained or well-trained subjects, which is known to improve test reliability (Stevens 

and Dascombe, 2015) and is also important to understand the specific responses within 

this population. It should be noted that for the studies concerning the internal application 
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of menthol and endurance performance, the researchers formulated their own liquid 

menthol solution for mouth rinsing or ingestion. Hence, development of an optimal 

solution for these purposes is needed, and further, experimentation with combinations of 

menthol, carbohydrate, electrolyte and caffeine would increase practicality for athletes. 

Synthetic compounds with similar cooling effects should also be considered as they may 

have improved palatability and may be easier to formulate (Watson et al., 1978) Future 

researchers should ensure that the dose of any external solution is specified (in g·cm2) to 

simplify comparisons between studies and further, assessment of the dose-response 

relationship is also needed for the various menthol application methods. Finally, current 

research has focussed on the thermal and ventilatory mechanisms of internal menthol 

application, while the analgesic and arousing properties of menthol may also contribute to 

improved endurance exercise performance in the heat. Hence, these measures should be 

incorporated into future research. 

 

4.7. Conclusion 

The majority of research has focused on the use of menthol to impart a cooling sensation 

on athletes performing endurance exercise in the heat. In this situation, menthol appears 

to have the greatest beneficial effect on performance when applied internally. Conversely, 

only one study observed an improvement in endurance exercise capacity following 

external application of menthol. While studies are limited in number, menthol has not yet 

proven to be beneficial for speed or strength and only effective at increasing joint range of 

motion following exercise that induced delayed onset muscle soreness. Internal application 

of menthol likely stimulates improvements in endurance performance in the heat through 

thermal and ventilatory mechanisms, however the analgesic and arousing properties of 

menthol may also play a role. 
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CHAPTER 5 : THE DEVELOPMENT OF A MENTHOL 

SOLUTION FOR USE DURING SPORT AND EXERCISE3  

 

Menthol mouth-swilling has been shown to improve performance across differing exercise 

modalities, yet no work has been conducted to ascertain the preferred concentration of 

menthol within a swill. Colour has also been shown to influence psychophysiological 

outcomes, and may influence the efficacy of ergogenic aids. We conducted two 

experiments: one to ascertain preferred menthol concentration (0.005-0.105% menthol), 

the second to assess colour preference (Light Blue, Dark Blue, Light Green, Dark Green, 

Red). Participants rated swills for Smell, Taste, Freshness, Mouth Feel and Irritation (plus 

Appearance in the second trial) via 15cm Visual Analogue Scales (VAS), having swilled 

and expectorated 25ml of fluid. Both trials employed a crossover design, with tasting order 

assigned by Latin squares. Differences were assessed for statistical significance (p<0.05) 

using one way repeated measures ANOVAs. Standardised mean differences ± 90% 

confidence intervals were calculated to assess the magnitude of any observed differences. 

No significant differences were found between concentrations for total VAS score, but 

higher concentrations demonstrated a greater number of small effects. Similarly, no 

significant differences between colours were found. Small effects were found when Light 

Green was compared to Dark Green and Red. Effects were trivial when Light Green was 

compared to Light Blue (0.05 ± 0.20) and Dark Blue (0.19 ± 0.32). We recommend athletes 

employ a Light Green or Light Blue 0.1% menthol mouth-swill.  

 

5.1 Introduction 

Mouth-swilling strategies may be useful during exercise to alleviate ‘dry mouth’ brought 

about by a reduction in salivary flow rate (Dawes, 1987). Other ergogenic effects are likely 

dependent upon the exercise mode undertaken (Beaven et al., 2013; Clarke, Kornilios and 

Richardson, 2015; Stevens and Best, 2017; Peart, 2017) and active ingredients within the 

swill, e.g., Caffeine (Beaven et al., 2013; Doering et al., 2014), Carbohydrate (Burke and 

Maughan, 2014; Stellingwerff and Cox, 2014) or Menthol (Stevens and Best, 2017). These 

ingredients may also be combined with other ergogenic strategies to maximise the 

 

3 The work presented in this chapter has been accepted for publication in the journal 

Beverages doi: https://doi.org/10.3390/beverages4020044  

https://doi.org/10.3390/beverages4020044
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influence upon physiological and psychological determinants of fatigue (Riera et al., 2014; 

Tran Trong et al., 2015; Best et al., 2018). 

Menthol presents in nature as both a fragrance and flavour molecule, targeting the 

olfactory and gustatory systems (Eccles, 1994; 2000), typically imparting feelings of 

coolness and freshness (Eccles, 1994; 2000; Eccles et al., 2013), hence its seemingly 

ubiquitous use in consumable products such as confectionary, cosmetics and 

pharmaceutical applications. A more contemporary application of menthol has been that 

of an ergogenic aid which can be applied topically (Gillis et al., 2016), used as a mouth 

swill (Mündel and Jones, 2009; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 

2016) or ingested alongside ice slurry (Riera et al., 2014; Tran Trong et al., 2015; Riera et 

al., 2016). This use is fitting, with menthol shown to increase the drive to breathe (Eccles, 

2003), elevate ventilation (Meamarbashi and Rajabi, 2013) and attenuate thirst (Eccles, 

2000), along with eliciting sensations of coolness and freshness that may alleviate thermal 

symptoms during exercise (Stevens and Best, 2017). However, the variability of 

concentration of menthol within mouth swills and other menthol containing strategies 

applied to the oral cavity is large. Given such variability, the potential for menthol 

concentration to affect the efficacy of a treatment, palatability of the menthol solution and 

any resultant physiological or subjective effects brought about by menthol use is viable. 

Therefore, an optimal or preferred concentration should be explored. 

Similar to concentration, colour has been shown to influence the efficacy of a treatment. 

For example, studies assessing medical interventions (de Craen et al., 1996), product 

design (Fenko, Schifferstein and Hekkert, 2010), solution odour (Michael and Rolhion, 

2008) and fictitious sport supplements (Szabo et al., 2013) have reported that the colour 

of the treatment can significantly influence psychophysiological outcomes. The colour 

green has been associated with coolness (Michael and Rolhion, 2008; Fenko, Schifferstein 

and Hekkert, 2010), tranquilising effects (de Craen et al., 1996) and enhanced endurance 

performance (Szabo et al., 2013), with blue displaying similar qualities (de Craen et al., 

1996; Michael and Rolhion, 2008; Fenko, Schifferstein and Hekkert, 2010). Conversely, 

red and orange are renowned for stimulatory and warming effects (de Craen et al., 1996; 

Fenko, Schifferstein and Hekkert, 2010) but have been shown to decrease motor 

performance (Briki et al., 2015). Such responses are thought to be conditioned through 

previous experience of colour-associated treatments (de Craen et al., 1996; Fenko, 

Schifferstein and Hekkert, 2010), suggesting that previous experience with a coloured 

product or intervention, may influence participants expectation about the efficacy of that 

treatment (de Craen et al., 1996; Szabo et al., 2013). 
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Menthol’s novel properties, when coupled with the potential for colour to enhance 

perceptions of coolness and treatment efficacy, suggest that the development of a menthol 

solution for experimental application is a process that requires consideration, beyond that 

of palatability. Therefore, the aims of this study were twofold: (1) to ascertain the preferred 

concentration of a menthol solution, and (2) to identify preferred colour of a menthol 

solution. To achieve this, we conducted two separate experiments. 

 

5.2 Material and methods 

Two repeated measures, post-only crossover design studies were conducted. In study 1, 

twenty-one participants (15 male, 6 female, 26.9 ± 5.7 years) were recruited to understand 

the preferred concentration of menthol. In study 2, thirty-five participants (13 males, 22 

females, 22.7 ± 5.7 years) were recruited to identify the preferred colour of a menthol 

solution. Both studies took place in laboratories at 22 ± 0.3 °C. 

Participants in both experiments were excluded if they had any illness that affected their 

ability to taste or smell, they had anosmia (loss of smell), ageusia (loss of taste), or if they 

had recently suffered any stomach illnesses such as food poisoning or diarrhoea. 

Participants were also excluded if they were colour blind. Ethical approval was granted by 

the School of Social Sciences, Humanities and Law Ethics Committee at Teesside 

University. 

In study 1, menthol crystals ((-)-menthol, Sigma Aldrich, Dorset, UK) were dissolved in 

ethanol to produce a 5% menthol solution (i.e., 50 g menthol per Litre of ethanol). Ethanol 

was used as a solvent to ensure thorough dilution of menthol throughout the solution, 

avoiding a film forming or any clumping of partially dissolved menthol crystals. The 

ethanol-menthol solution was then diluted to the experimental concentrations, using 

distilled water. Experimental concentrations ranged from 0.005 to 0.105%, in 0.01% 

increments. All solutions were colourless/transparent. Participants swilled 25 mL of 

menthol solution for 10 s (Mündel and Jones, 2009). They were then asked to rate the 

solution for Smell, Taste, Mouth Feel, Freshness & Irritation, using 15 cm Visual 

Analogue Scales (VAS). VAS were marked with polarised descriptors ‘Unpleasant’ and 

‘Pleasant’ at the left and rightmost extremes of each scale, respectively. This process was 

repeated for each menthol concentration, with tasting order being assigned via an 11 × 11 

Latin Square, through a custom-made spreadsheet. Water was available ad libitum 

between tastings. Coffee beans were made available to participants between trials. Inhaling 

the aroma from the beans provided a contrasting aromatic and olfactory stimulus, with a 

view to minimising cumulative sensory interference across menthol trials. 
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In study 2, coloured versions (light blue, dark blue, light green, dark green and red) of the 

preferred menthol solution identified in study 1 were tasted to assess the effect of colour 

on participants’ perception of solution characteristics. Dark blue and green colours were 

achieved by adding 2 mL of food colouring (Queen Fine Foods Ltd., Alderley, 

Queensland, Australia) to solution, whereas light blue and green were produced by adding 

0.5 mL of food colouring. The red solution contained 1 mL of food colouring to be 

independent of green and blue coloured solutions. Participants repeated the VAS as 

described in study 1, but in addition, were asked to rate the solutions’ Appearance. Tasting 

order was assigned via a 5 × 5 Latin Square, through a custom-made spreadsheet. 

Total VAS score (mean ± standard deviation) per solution was calculated as the sum of 

the mean scores for each assessed variable, for each concentration and colour. One-way, 

repeated measures ANOVAs were used to assess the difference in total solution score, 

between solution concentrations and colour in study 1 and 2, respectively. Checks for 

normality and variance of the residuals were performed. All analyses were performed 

using SPSS (v23, IBM, New York, NY, USA). Effect sizes were calculated as standardised 

mean differences and 90% Confidence Intervals (C.I.) using a customised spreadsheet 

(Hopkins, 2006), with accompanying descriptors (Hopkins et al., 2009). Effect Size 

thresholds are Trivial (>0.20) Small (0.2–0.6) Medium (0.6–1.2) Large (1.2–2.0) Very 

Large (>2.0) as per Hopkins and colleagues (Hopkins et al., 2009). Ninety percent (90%) 

C.I. are used to differentiate between any observed significant results, and the likely range 

in which true differences may occur (Sterne and Smith, 2001; Hopkins et al., 2009), rather 

than as another method of expressing a significant result. 

 

5.3 Results 

 

5.3.1 Solution concentration 

Mauchly’s test indicated that sphericity had been violated, χ2 (54) = 94.11, p = 0.001; 

therefore, a Greenhouse-Geisser (ε = 0.470) correction was applied. There were no 

significant main differences between menthol mouth swill concentrations, F (4.695,93.903) = 

0.974, p = 0.435. Standardised mean differences are presented in Table 1. Menthol 

concentrations of 0.095% and 0.105% demonstrated a greater number of Small effects 

than other concentrations; specifically, demonstrating Small effects with confidence 

intervals that did not overlap zero, and values for subjective overall perception of 389 ± 

94.73 and 383.14 ± 107.22, respectively (Figure 1; Panel A). Consequently, a 0.10% 

solution was used in the colour trial. 
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5.3.2 Solution colour 

Mauchly’s test indicated that sphericity had been violated, χ2 (9) = 24.08, p = 0.004; 

therefore, a Greenhouse-Geisser (ε = 0.755) correction was applied. No significant 

differences were observed between mouth swill colours, F (3.019, 11211.266) = 0.835, p = 0.479. 

Light Green was rated more highly than other solutions (Figure 2), and demonstrated 

Small differences against Dark Green (0.28 ± 90% CI: 0.33) and Red (0.24 ± 0.31) but 

was only trivially different to Dark Blue (0.19 ± 0.32) and Light Blue (0.05 ± 0.20) 

solutions. Light Blue displayed a Small difference when compared to Dark Green (0.23 ± 

0.38), with all other differences considered Trivial (Dark Blue: 0.14 ± 0.36; Red: 0.19 ± 

0.32). 

 

  



 96 

 
Figure 5-1 Subjective overall preference for each menthol concentration (%), expressed as Mean VAS 

rating per solution concentration ± 1 S.D (Panel A) and as a sum of constituent mean VAS for each 

reported characteristic (Panel B). 
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Table 5-1 Effect Sizes and accompanying 90% Confidence Intervals for solution concentrations. Effect Size thresholds are Trivial (>0.20) Small (0.2 - 0.6) Medium (0.6 

– 1.2) Large (1.2 – 2.0) Very Large (>2.0) as per Hopkins (2010). Small effects with confidence intervals not overlapping zero are marked with an asterisk (*). 

 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105 

0.005 X 0.27 ± 0.56 0.03 ± 0.59 0.52 ± 0.59 0.49 ± 0.54 0.16 ± 0.48 0.44 ± 0.5 0.29 ± 0.58 
0.41 ± 

0.35* 
0.09 ± 0.48 0.20 ± 0.55 

0.015 - x 0.29 ± 0.32 0.24 ± 0.24 0.19 ± 0.26 0.2 ± 0.39 0.09 ± 0.37 0.01 ± 0.39 0.08 ± 0.51 0.23 ± 0.48 0.17 ± 0.44 

0.025 - - x 0.24 ± 0.25 0.19 ± 0.27 0.19 ± 0.36 0.08 ± 0.31 0.01 ± 0.35 0.08 ± 0.49 0.24 ± 0.52 0.19 ± 0.47 

0.035 - - - x 0.05 ± 0.37 
0.44 ± 

0.36* 
0.16 ± 0.35 0.25 ± 0.32 

0.41 ± 

0.39* 

0.50 ± 

0.48* 

0.42 ± 

0.35* 

0.045 - - - - x 0.38 ± 0.41 0.10 ± 0.46 0.18 ± 0.50 0.10 ± 0.45 0.39 ± 0.53 0.34 ± 0.53 

0.055 - - - - - x 0.28 ± 0.39 0.20 ± 0.34 0.27 ± 0.46 0.04 ± 0.39 0.02 ± 0.44 

0.065 - - - - - - x 0.08 ± 0.30 0.01 ± 0.53 0.31 ± 0.43 0.26 ± 0.33 

0.075 - - - - - - - x 0.18 ± 0.51 0.25 ± 0.41 0.20 ± 0.33 

0.085 - - - - - - - - x 0.13 ± 0.41 0.08 ± 0.56 

0.095 - - - - - - - - - x 0.06 ± 0.44 

0.105 - - - - - - - - - - x 
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Figure 5-2 Subjective overall perception (Arbitrary Units) for solution colour, expressed as Mean VAS rating 

per solution colour ± 1 S.D. 

 

5.4 Discussion 

Menthol mouth swilling is considered a practical ergogenic strategy before and during 

exercise in hot environments (Stevens, Taylor and Dascombe, 2016; Best et al., 2018) and 

has been used to improve performance during time trials (Stevens, Bennett, et al., 2016; 

Stevens, Thoseby, et al., 2016) and time to exhaustion (Mündel and Jones, 2009; Flood, 

Waldron and Jeffries, 2017). Perception of menthol mouth swill concentration may be 

highly individual in nature, with 200 gene variants of the receptor responsible for menthol 

detection (TRPM8 (Morgan, Sadofsky and Morice, 2015)). This may in part explain the 

broad standard deviations and confidence intervals overlapping zero in our results. 

Perception may be dependent upon physiological factors such as trigeminal 

chemosensitivity (Frasnelli et al., 2011; Michlig et al., 2016) and stratum corneum 

thickness (H.R. Watson et al., 1978), or environmental influences such as previous or 

habitual exposure to trigeminal agonists (Cliff and Green, 1996; Gillis et al., 2015), e.g., 

regular use of mentholated products. Habitual menthol use may alter the threshold at which 
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TRPM8 channels and the trigeminal nerve are stimulated (Kalantzis, Robinson and 

Loescher, 2007; Klein et al., 2010; Gillis et al., 2015; Botonis et al., 2016), ultimately 

habituating thermal sensation (Gillis et al., 2015; Botonis et al., 2016). Despite no 

statistically significant differences in the present investigation, menthol concentrations of 

0.095–0.105% may lead to small increases in trigeminal stimulation, concomitantly 

conferring benefits such as an increase in ventilation (Mündel and Jones, 2009; Stevens 

and Best, 2017), reduced thermal sensation (Stevens, Thoseby, et al., 2016) and thirst 

(Eccles et al., 2013), and improved thermal comfort (Riera et al., 2014) when exposed to 

the oral cavity. 

The possibility that repeated menthol exposure may confer greater benefits than a single 

dose of menthol has not been directly explored to date. All menthol-containing studies 

(Mündel and Jones, 2009; Riera et al., 2014; Tran Trong et al., 2015; Stevens, Bennett, et 

al., 2016; Stevens, Thoseby, et al., 2016; Riera et al., 2016; Flood, Waldron and Jeffries, 

2017) have employed a repeated exposure during the exercise bout—this is quantified via 

time or distance. Better understanding the time course of menthol mouth swilling 

responses, and the potential impact of concentrations upon these, would provide insight 

into possible limitations in application for menthol-containing strategies. 

The highest rated solution colour in this investigation (Light Green; 474.40 ± 118.68 

Arbitrary Units). The Light Blue solution was also rated highly, with trivial effects 

reported between Light Green and Light Blue (468.49 ± 124.15 Arbitrary Units; 0.05 ± 

0.20 Trivial). Menthol-containing products such as mouth-wash, confectionary and other 

oral hygiene products are associated with these colours (Shankar, Levitan and Spence, 

2010; Spence, 2015), and subjective qualities of solution may be enhanced due to this 

association (Michael and Rolhion, 2008; Fenko, Schifferstein and Hekkert, 2010; Yu et 

al., 2017). In the absence of significant results between solution colours, researchers may 

consider using a light green or light blue coloured solution as a starting point for future 

menthol research. 

The perception of colour and concentration may be influenced via the environment in 

which the solution is administered. The present study was conducted in an ambient 

temperature laboratory (22 ± 0.3 °C), which may have enhanced the subjective qualities 

of the menthol solution(s). For example, blue and green are typically associated with 

cooling (Michael and Rolhion, 2008; Fenko, Schifferstein and Hekkert, 2010), participants 

may have therefore perceived these colours as more refreshing than red, which is 

associated with warming (de Craen et al., 1996; Fenko, Schifferstein and Hekkert, 2010). 

Future research should aim to understand the perception of concentration and colour under 
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differing environmental conditions; especially those conditions that are below 8 °C or 

exceed 28 °C. These temperatures represent threshold values for the menthol receptor 

TRMP8 (Patel, Ishiuji and Yosipovitch, 2007), and the human thermoneutral zone (≥28 

°C (Bligh and Johnson, 1973; Cabanac and Massonnet, 1977; Best, Payton et al., 2018)). 

Investigations at the upper limit of, or exceeding this range are greater than the temperature 

at which the rate of metabolic heat production exceeds the rate of thermal transfer to the 

environment (25 °C (Kenny and Jay, 2013)). This provides an important platform from 

which to study the perceptual and physiological responses to menthol mouth swilling 

during exercise. The mode (e.g., running or cycling (Mora-Rodriguez, Ortega and 

Hamouti, 2011; Junge et al., 2016)) and nature (continuous or interval; (Mora-Rodriguez, 

Del Coso and Estevez, 2008)) of exercise are also important experimental concerns, due 

to differences in heat production, heat storage, and hyperthermia risk (Mora-Rodriguez, 

Ortega and Hamouti, 2011). 

Practically, the effect of colour extends beyond the aesthetic qualities of a solution or 

treatment; treatment colour may impart emotional modifications that could be tailored to 

an athlete’s psychological profile. Red is typically associated with high arousal states 

(Dreiskaemper et al., 2013; Briki and Hue, 2016), anger (Fetterman et al., 2010) and 

danger (Young et al., 2013); red has also been associated with Tae Kwando match outcome 

(Falcó, Conchado and Estevan, 2016). Conversely, blue and green are perceived as 

calming (de Craen et al., 1996), only slightly arousing (Briki and Hue, 2016), and in 

congruence with our findings have been shown to be perceived as more pleasant than red 

(Briki and Hue, 2016). Recently, a green inert drink was used to facilitate an induced 

beliefs investigation into sprint performance (la Vega et al., 2017). The colour green was 

chosen specifically in this investigation due to the potency of belief around green 

substances’ abilities to enhance performance (Szabo et al., 2013; la Vega et al., 2017). 

Such expectancy cannot be ignored in our investigation, or the practical application(s) of 

its findings. Furthermore, perceptions and preferences of colour, vary between individuals, 

within groups and across cultures (C. Taylor, Clifford and Franklin, 2013). Colours can be 

interpreted as having opposing meanings in different countries and cultures (Al-Rasheed, 

2015), but in multi-cultural individuals have been reported to be interpreted intermediately 

(Yokosawa et al., 2016), careful consideration of cultural perceptions would further 

enhance the implementation of our findings. 
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5.5 Conclusion 

Based upon the results of our study, we recommend athletes and practitioners work 

together to ascertain a menthol concentration for mouth swilling. This concentration would 

ideally be based upon an individual’s perception of the characteristics assessed in this 

work, and their competitive and training environment(s). Similarly, for practitioners, we 

advise using a light blue or green solution as a starting point for further investigation, given 

the synonymy with menthol containing products, but acknowledge that other cultural 

factors may influence this decision. 
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5.6 Addendum to Chapter 5: The Development of a Menthol Solution for use during 

Sport and Exercise 

 

This addendum does not appear in the published version of this chapter (Best, Spears, et 

al., 2018) but has been included at the request of examiners to further elucidate the values 

presented in Figure 5.1B, and thus proffer an explanation as to the influence of each of the 

assessed variables (Smell, Taste, Mouth Feel, Freshness and Irritation) upon the total score 

of each menthol solution concentration.  

A forced entry multiple linear regression was performed in SPSS (v 26, IBM, New York, 

NY, USA). This methodology was used to counter the concerns regarding the stepwise 

approach, as outlined by Smith (2018). This regression model ranks contributing variables 

(Smell, Taste, Mouth Feel, Freshness and Irritation) by their ability to explain the change 

in total solution score. Between concentration comparisons via standardised mean 

differences were calculated made for the top weighted variable, and individual responses 

represented pictorially (Figure 5.3). Smallest worthwhile change (mm) was calculated as 

0.2 * between subjects’ standard deviation for the variable(s) of interest, equating to 

7.52mm. 

 

5.6.1 Multiple Linear Regression 

The model explained nearly all the variance in total solution score (R2 = 0.994), and could 

significantly predict total solution score, F (5, 220) = 7643.5, p < 0.001. All variables 

significantly predicted total solution score (all p < 0.001), individual contributions to the 

model (b values), their standard errors and standardised values (ß) are presented in table 

5.2 below. Real change values (i.e. how many mm a change of one standard deviation of 

a variable contributes to total VAS score) are also included; real changes are calculated by 

multiplying the standard deviation of each variable by its standardised value (ß). 

 

Table 5-2 Results of Multiple Regression analysis; all variables are significant predictors at p < 0.001 

Variable b SE b ß 
Real change 

(mm) 

Constant 1.561 2.176 - - 

Freshness .942 0.022 .261 7.855 

Smell 1.016 0.020 .278 8.288 

Taste 0.977 0.020 .291 9.426 

Mouth Feel 1.054 0.022 .315 10.241 

Irritation 0.979 0.017 .347 13.371 
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Collinearity is the extent to which multiple predictor variables within the model, correlate 

with each other; clearly if this is shown to occur, it is problematic as multiple predictors 

may predict an overlapping amount of variance within the dependent variable, and thus 

explain similar or the same parts of the model. Collinearity between variables was assessed 

by examining the average (mean) of variance inflation factors (VIF) and tolerance 

statistics for each variable. Collinearity was defined as a mean VIF substantially greater 

than 1, and tolerance statistics <0.2, as per Field (2011). Mean VIF was 1.411 and all 

tolerance statistics were >0.2 (0.584 – 0.847) so collinearity between variables was 

considered not to have occurred. 

 

 

 

Figure 5-3 Individual and mean responses for perceptions of irritation, per concentration. Mean responses 

are represented by shaded bars, individual responses by open circles
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Table 5-3 Effect Sizes and accompanying 90% Confidence Intervals for irritation. Effect Size thresholds are Trivial (>0.20) Small (0.2 - 0.6) Medium (0.6 – 1.2) Large (1.2 – 2.0) Very 

Large (>2.0) as per Hopkins (2010). Small effects with confidence intervals not zero are marked with an asterisk (*). 

 0.005 0.015 0.025 0.035 0.045 0.055 0.065 0.075 0.085 0.095 0.105 

0.005 X 0.43 ± 0.51 0.29 ± 0.48 0.62 ± 0.43* 0.56 ± 0.49* 0.32 ± 0.39 0.71 ± 0.37* 0.42 ± 0.50 0.59 ± 0.47* 0.25 ± 0.38 0.52 ± 0.50* 

0.015 - x 0.24 ± 0.29 0.16 ± 0.20 0.12 ± 0.28 0.06 ± 0.28 -0.29 ± 0.38 0.07 ± 0.35 0.08 ± 0.33 0.17 ± 0.39 -0.11 ± 0.33 

0.025 - - x 
-0.39 ± 

0.30* 

-0.31 ± 

0.26* 
-0.18 ± 0.40 

-0.52 ± 

0.44* 
-0.16 ± 0.31 -0.14 ± 0.35 -0.06 ± 0.36 -0.35 ± 0.40 

0.035 - - - x 0.09 ± 0.30 0.21 ± 0.27 -0.14 ± 0.31 0.23 ± 0.28 0.22 ± 0.32 0.34 ± 0.35 0.04 ± 0.20 

0.045 - - - - x 0.11 ± 0.37 -0.20 ± 0.42 0.10 ± 0.35 0.12 ± 0.38 0.19 ± 0.43 -0.09 ± 0.38 

0.055 - - - - - x 
-0.33 ± 

0.30* 
0.01 ± 0.33 -0.06 ± 0.31 0.11 ± 0.30 -0.17 ± 0.36 

0.065 - - - - - - x 0.36 ± 0.31* 0.24 ± 0.35 0.46 ± 0.36* 0.18 ± 0.32 

0.075 - - - - - - - x -0.01 ± 0.36 0.10 ± 0.30 -0.18 ± 0.28 

0.085 - - - - - - - - x 0.13 ± 0.35 -0.15 ± 0.35 

0.095 - - - - - - - - - x -0.30 ± 0.36 

0.105 - - - - - - - - - - x 
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5.6.2 Discussion 

The model found that irritation accounted for the most real change (mm) in total solution 

score, suggesting that participants’ sensory preferences may primarily be based upon their 

rating of a solution’s irritation. This can be attributed, at least in part, to the wording of the 

polarised descriptors: “Unpleasant” and “Pleasant”. A lower concentration of menthol is 

less likely to be interpreted as irritating due to the solution’s higher water percentage, 

relative to higher concentration menthol solutions. Interestingly, these responses were 

neither unanimous nor dose dependent (i.e. progressively greater pleasant scores as 

menthol concentration decreased). The 0.005% solution differed by ≥SWC to all but one 

solution (0.025%), yet the distribution of the data (Figure 5.3) demonstrates participants 

do not consistently interpret menthol concentrations within this range as either pleasant or 

unpleasant. A larger sample size is required to elucidate any apparent trends in the figure, 

and a Likert scale as opposed to a VAS may have produced more discrete results due to a 

greater number of anchors and fewer possible responses, as opposed to the 150mm scale 

used in the present investigation. 

Given its weighting in the multiple linear regression model, a similar interpretation is 

likely acceptable for mouth feel. The weighting of irritation and mouth feel within the 

model begs the question of whether participants are assessing the most pleasant solution 

or the least unpleasant? This is an important consideration for athletes and associated 

practitioners who are looking to employ the strategy of menthol mouth rinsing in the field. 

It may not matter whether the athlete enjoys the characteristics of the solution, more that 

these characteristics are sufficient so that they can be qualitatively accepted and tolerated 

by the athlete during their performance, and any beneficial performance effects 

manifested.  
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CHAPTER 6 : PERCEPTUAL AND PHYSIOLOGICAL 

RESPONSES TO CARBOHYDRATE AND MENTHOL 

MOUTH-SWILLING SOLUTIONS 

 

Carbohydrate and menthol mouth-swilling have been used to enhance exercise 

performance in the heat. However, these strategies differ in mechanism and subjective 

experience. Participants (n=12) sat for 60 min in an environmental chamber (35°C; 

15±2%), following a 15 min control period, participants undertook three 15 min testing 

blocks. A randomised swill (Carbohydrate; Menthol; Water) was administered per testing 

block (one swill every three minutes within each block). Heart rate, tympanic temperature, 

thermal comfort, thermal sensation and thirst were recorded every three minutes. Data 

were initially analysed by ANOVA with carbohydrate intake subsequently controlled for 

via ANCOVA. Data are reported as effect size ± 90% confidence intervals, with 

accompanying descriptors. Small elevations in heart rate were observed after carbohydrate 

(ES: 0.22 ± 90% CI: -0.09 to 0.52) and water (0.26; -0.04 to 0.54). Tympanic temperature 

was moderately different between control and all testing blocks. Menthol showed small 

improvements in thermal comfort relative to carbohydrate (-0.33; -0.63 to 0.03) and water 

(-0.40; -0.70 to -0.10), and induced moderate reductions in thermal sensation (-0.71; -1.01 

to -0.40 and -0.66; -0.97 to -0.35, respectively). Menthol reduced thirst by a small to 

moderate extent. These effects persisted when controlling for carbohydrate intake: 

menthol improved thermal comfort compared to carbohydrate (0.29; -0.09 to 0.65) and 

water (0.41; 0.04 to 0.78), and elicited small to moderate improvements in thermal 

sensation (-0.63; -1.00 to -0.25 and -0.38; -0.75 to -0.01) and thirst (-0.46; -0.83 to -0.08 

and -0.67; -1.04 to -0.29). Carbohydrate and water may elevate HR, whereas menthol 

elicits small improvements in thermal comfort, moderately improves thermal sensation 

and may mitigate thirst; these effects persist when dietary carbohydrate intake is controlled 

for. 

 

6.1 Introduction 

Mouth swilling is an increasingly popular ergogenic strategy employed by athletes over 

short to moderate exercise durations (Carter and Jeukendrup, 2004; Painelli, Nicastro and 

Lancha, 2010; Pottier et al., 2010; Rollo and Williams, 2011; Burke and Maughan, 2014; 
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Peart, 2017), during nutrient restricted states (Fares and Kayser, 2011; S.C. Lane et al., 

2013; Che Muhamed et al., 2014; Ataide-Silva et al., 2016), and may be appropriate during 

times of potential gastrointestinal distress (de Oliveira, Burini and Jeukendrup, 2014; 

Stuempfle and Hoffman, 2015). Multiple nutritional stimuli are swilled, with each 

conferring a different ergogenic effect and magnitude thereof (Rollo and Williams, 2011; 

Beaven et al., 2013; Burke and Maughan, 2014; Zhang et al., 2014; Stevens and Best, 

2017), most likely due to affecting differing sensory pathways. More precisely, as the 

nutritional stimulus being swilled changes the cells targeted by, and exposed to, the swill 

also alter and the resultant ergogenic effect is the product of these interactions. Nutritional 

stimuli that are swilled either directly or indirectly affect the brain and bypass the digestive 

system, thereby reducing energy intake and the risk of gastrointestinal distress, which is 

frequently reported during prolonged endurance activity (de Oliveira, Burini and 

Jeukendrup, 2014; Stuempfle and Hoffman, 2015; Costa et al., 2016; 2017) when caffeine 

(Papakonstantinou et al., 2016) and / or carbohydrate are ingested (Stuempfle, Hoffman 

and Hew-Butler, 2013; Stuempfle and Hoffman, 2015; Wardenaar et al., 2015).  

Carbohydrate (CHO) is considered the gold-standard ergogenic mouth swilling strategy, 

with a wealth of literature documenting its efficacy in contrasting environments (Cramer, 

Thompson and Périard, 2015), nutritional states (Fares and Kayser, 2011) and sports 

(Stellingwerff and Cox, 2014; Clarke, Kornilios and Richardson, 2015; Williams and 

Rollo, 2015). Mechanistically, CHO is shown to activate areas of the brain that are 

associated with behavioural, cognitive and emotional responses (Carter and Jeukendrup, 

2004), with areas associated with motivation and motor control also stimulated (Gant, 

Stinear and Byblow, 2010). Activation of these higher order and efferent regions of the 

brain, as supported by fMRI, provide strong explanation(s) for CHO mouth swilling’s 

ergogenic effects to date, but CHO is also shown to affect receptors within the oral cavity 

(Chambers, Bridge and Jones, 2009), as is caffeine (Devillier, Naline and Grassin-Delyle, 

2015; Liszt et al., 2017; Lipchock et al., 2017) and menthol (Eccles, 1994; Eccles, Du-

Plessis, Dommels and Wilkinson, 2013; Stevens and Best, 2017). 
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Menthol is considered a trigeminal afferent, stimulating the trigeminal nerve (Klein et al., 

2010; Frasnelli et al., 2011) and associated TRPM8 receptors (Bautista et al., 2007; 

Nazıroğlu and Özgül, 2011; Gavva et al., 2012). The trigeminal network innervates the 

ophthalmic, mandibular and maxillary regions as shown below (Figure 6.1), with menthol 

and other cold stimuli particularly affecting the maxillary region, and due to its proximity 

to the nasal and oral cavities (Hummel and Livermore, 2002) stimuli have almost direct 

access to nerve endings due to the lack of squamous epithelia covering mucosa (Hummel 

and Livermore, 2002). Indeed, it is stimulation of this collection of nerves that is 

responsible for sphenopalatine ganglioneuralgia, or ‘brain freeze’ (Byrne et al., 2011). 

This potent response highlights the sensitivity and role within cold temperature detection 

of TRPM8 receptors, and is likely enhanced due to the thinness of the membrane within 

the oral cavity (H.R. Watson et al., 1978; Stevens and Best, 2017). Sports scientists have 

recently begun to investigate menthol mouth swilling as a strategy to ameliorate feelings 

of thermal comfort and sensation and exercise performance in hot conditions (Mündel and 

Jones, 2009; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016; Flood, Waldron 

and Jeffries, 2017; Stevens and Best, 2017), but menthol may also confer hedonic and 

thirst attenuating responses that are yet to be investigated by sports scientists. These effects 

may in part be confounded by exercise due to effects such as increased ventilation 

(Meamarbashi and Rajabi, 2013; Best, Spears, et al., 2018) and decreased salivary flow 

rate (Dawes, 1987), but may be enhanced in hot conditions due to menthol’s stimulatory 

effect upon TRPM8 receptors and the long-documented preference for application of cold 

Figure 6-1 A classic anatomical drawing of the Trigeminal Nerve (Fig. 778; Grey). The nerve is depicted in 

yellow; the ophthalmic, maxillary and mandibular branches are numbered sequentially 1-3, respectively and 

emanate from the sphenopalatine ganglion. 
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stimuli to the tongue and oral-cavity under thermally challenging circumstances (Eccles, 

2000a; Eccles, Du-Plessis, Dommels and Wilkinson, 2013; Morris and Jay, 2016).  

Assessment of the effect of differing mouth swilling strategies on physiological and 

subjective measures under resting conditions may further elucidate mechanistic 

differences between nutritional stimuli applied to the oral cavity, without confounding 

effects brought about by exercise. Therefore, the aim of this investigation was to quantify 

physiological and subjective responses to CHO and menthol mouth swilling at rest, under 

thermally challenging conditions. 

 

6.2 Materials and Methods 

This investigation employed a within subjects, repeated measures design with participant’s 

baseline data serving as their reference values from which to derive experimental effects. 

Testing order of treatments within the experimental session was assigned via Latin square, 

using a customised spreadsheet (Pezzullo, 1999). All testing took place within an 

environmental chamber (Reltech, Gloucestershire, UK) set at 35ºC and 10% humidity, 

with outcome measures assessed at three minute intervals. Participants completed the 

study with a single visit to the laboratory; comparisons for experimental effects are derived 

from within session and between time point comparisons for each swill, thus values are 

assessed for an effect of condition, time point, and an interaction between these variables. 

Nutritional intake was recorded via a 24-hour food recall preceding the experimental 

session. These data were used to calculate dietary carbohydrate intake using specialist 

software (Nutritics, version 5.0, 2018, Nutritics Limited, Dublin, Ireland) which was 

subsequently included as a covariate in multiple analysis of covariance (see 6.2.5), as 

carbohydrate intake has previously been shown to influence responses to carbohydrate 

mouth rinsing (Fares and Kayser, 2011). Participants were made aware of the aim, 

procedure and risks of the study prior to providing informed written consent. Ethical 

approval for this investigation was granted by the Teesside University School of Social 

Sciences, Business and Law ethics board. 

 

6.2.1 Participants 

Twelve participants (11males and one post-menopausal female) took part in this 

investigation. Participants had a mean age of 31.45 years (± 90% CI: 26.88 to 36.02 years), 

and were 177.38 cm (172.99 cm to 181.76 cm) tall, weighing on average 75.87 kg (70.91 

kg to 80.82 kg). Participants were non-heat acclimated and were screened for medical 
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issues that may have affected their ability to participate in the investigation prior to 

commencement. 

 

6.2.2 Mouth swilling solutions 

Solutions were prepared outside of the environmental chamber, under thermoneutral 

conditions (22 ± 0.5 ºC), and administered in 25ml aliquots. Five swills took place per 

swill condition; swills lasted ~10 seconds prior to expectoration, with swilling order 

randomised via a Latin square design, using a customised spreadsheet (Pezzullo, 1999). 

Menthol (MEN) was prepared to a 0.1% concentration, as per Chapter 5 (Best, Spears, et 

al., 2018). Briefly, a 5% menthol ethanol-based stock solution was diluted to the desired 

concentration using distilled water. The carbohydrate mouth-swill (CHO) was prepared 

from unflavoured Maltodextrin (MyProtein, Northwich, United Kingdom), and was 

diluted to 10% concentration (100g.L-1). Water acted as the placebo swill, and a control 

period of no swilling was incorporated into each testing session (see Procedure). Quasi-

single blinding was employed, whereby solutions were matched to be colourless, but were 

not matched for taste. 

 

6.2.3 Procedure 

Testing began with 15 minutes of passive sitting, during which time outcome data were 

recorded by the researcher, but no swilling took place. Following this control period 

(CON), participants swilled their assigned swill at three minute intervals; five swills were 

completed per condition. Once the final swill was completed and outcome measures 

recorded, participants exited the chamber. The experimental procedure is pictorially 

represented in Figure 6.2. 
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Figure 6-2 Experimental Procedure: Black vertical lines from entering the chamber represent three minute 

intervals; at each interval, physiological and subjective measures were assessed as indicated by the clipboard 

and thermometer. Blank vessels represent the commencement of a new randomised mouth swill; this is 

supported with a change in shade of time interval cells. Randomised swills included water (blue), 

carbohydrate (orange) and menthol (green).  

 

6.2.4 Outcome Measures 

6.2.4.1 Physiological measures 

Tympanic temperature (Ttym) was assessed using a tympanic thermometer (±0.1°c), with 

measures taken from the ear contralateral to participants’ dominant hand. Temperature 

was assessed prior to the administration of mouth swills, so any potential increase in 

temperature caused by swilling or local irritation would be mitigated. Heart rate (HR) 

values were recorded 10 seconds prior to each three-minute interval via telemetry (Polar 

RS400; Polar, Helsinki, Finland). 

 

6.2.4.2 Subjective measures 

Subjective measures were assessed using validated rating scales, with accompanying 

descriptors. Thirst was assessed via a 10-point scale (Appendix 3; (Engell et al., 1987)), 

ranging from ‘Not at all thirsty’ to ‘Extremely thirsty’. Zhang et al.’s scales of TC and TS 

were used to assess these qualities (Appendix 2 (Zhang et al., 2004). Both scales range 

from -4 to +4, with polar descriptors of Very Uncomfortable: Very Comfortable, and Very 

Cold: Very Hot, respectively. As a point of difference, the TC scale contains values of -0 
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and +0 to numerically describe just uncomfortable and just comfortable, respectively 

(Zhang et al., 2004). 

 

6.2.5 Statistical Analyses 

Normality was assessed for using Skewness and Kurtosis tests (acceptable Z scores not 

exceeding +1 or -1). Initially, a two-way multiple analysis of variance (MANOVA) was 

conducted to determine differences between time and beverage type on physiological and 

subjective outcome measures. Secondly, a two-way multiple analysis of covariance 

(MANCOVA) was conducted to determine differences between time and beverage type 

on outcome measures when controlling for carbohydrate intake. Significance was set at an 

a priori alpha level of p<0.05. Effect sizes are reported as standardised mean differences 

± 90% C.I., with accompanying descriptors (Hopkins et al., 2009). Ninety percent (90%) 

C.I. are used to differentiate between any observed significant results and the likely range 

in which true differences may occur (Sterne and Smith, 2001; Hopkins et al., 2009), as 

opposed to another method of expressing a significant result. 

 

6.3 Results 

6.3.1 Carbohydrate Intake 

Mean carbohydrate intake for participants was 69.92g (± 90% CI: 55.89g to 83.94g), with 

an absolute range of 203g. These values are considered low in relation to participants’ 

bodyweight (Thomas, Erdman and Burke, 2016), hence being stated in absolute as 

opposed to relative values. 

 

6.3.2 MANOVA 

There was a statistically significant interaction effect between time and mouth-swill type 

on combined dependent variables, F (20,750.507) = 6.168, p<0.0001; Wilks’ Λ = 0.604. This 

interaction effect is attributed to the significant effect of mouth-swill type on combined 

dependent variables, F (10,452) = 2.419, p=0.008; Wilks’ Λ = 0.901, whereas time 

demonstrated a non-significant effect on combined dependent variables, F (10,452) = 1.090, 

p=0.368. Pairwise comparisons were used to identify significant effects upon dependent 

variables between mouth-swill types. 

  

6.3.2.1 Physiological outcomes 

Small (ES: 0.26; -0.04 to 0.54), significant differences in HR were observed between CON 

and water (p=0.018). Small (0.22; -0.09 to 0.52) non-significant differences in HR were 
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also recorded between CON and CHO. All other HR comparisons were non-significant 

and trivial. Tympanic temperature during the CON period was significantly different to all 

other conditions (values; p<0.001), displaying Moderate effects (MEN: 0.89; 0.56 to 1.19. 

CHO: 0.91; 0.59 to 1.22. Water: 0.88; 0.56 to 1.19) Tympanic temperature displayed 

Trivial, non-significant effects across all other comparisons i.e. between swills.  

 

6.3.2.2 Subjective outcomes 

Thermal comfort was significantly greater (p<0.002) in CON compared to water swilling 

(Small; -0.39; -0.69 to -0.09). Despite not reaching statistical significance (p<0.062) there 

were small (-0.32; -0.63 to -0.02) differences in TC between CON and CHO conditions 

too, whereas MEN was only trivially different to CON (-0.01; -0.29 to 0.31). Menthol 

improved TC by a small magnitude compared to CHO (-0.33; -0.63 to -0.03) and water (-

0.40; -0.70 to -0.10). Carbohydrate and water swilling were trivially different (0.10; -0.20 

to 0.40) with respect to TC. Thermal sensation was moderately and significantly reduced 

by MEN in comparison to CON, CHO and water (see Table 6.1). All other comparisons 

were trivially and non-significantly different. Thirst was significantly greater in CON 

compared to MEN (p<0.001) and water (p<0.011), but not CHO (p=0.134); magnitudes 

of swilling’s ability to improve thirst varied from small to moderate (see Table 1). Menthol 

lowered thirst significantly in comparison to CON and CHO, but not water; these 

differences were moderate in nature. Further contrasts are outlined in Table 1. 

 

6.3.3 MANCOVA 

Upon controlling for carbohydrate intake, there was a significant effect of mouth-swill 

type upon combined dependent variables F (10,298) = 1.913, p<0.043; Wilks’ Λ = 0.883. 

Between subjects’ comparisons revealed significant differences for TS (p<0.004) and 

thirst (p<0.048). Heart rate (p<0.598) and Ttym (p<0.634) responses were not significantly 

different between conditions when carbohydrate intake was controlled for, nor were 

differences in TC (p<0.151).  

Despite non-significant differences in TC (p<0.151), when compared to both CHO (0.29; 

-0.09 to 0.65) and water (0.41; 0.04 to 0.78), MEN improved TC to a small extent. Pairwise 

comparisons demonstrated MEN significantly reduced TS in comparison to CHO (-0.36 

units; p<0.004) and water (-0.37 units; p<0.008), exerting moderate (-0.63; -1.00 to -0.25) 

and small (-0.38; -0.75 to -0.01) effects respectively. Similar reductions in thirst were also 

observed, however in contrast to the unadjusted model MEN displayed a moderate (-0.67; 

-1.04 to -0.29) standardised mean difference in thirst compared to water of -0.69 units 
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(p<0.023), with a small (-0.46; -0.83 to -0.08) difference in comparison to CHO (-0.49 

units; p<0.068). 
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Table 6-1 Differences between mouth-swilling conditions for thermal sensation and thirst; significant effects are denoted by an asterisk (*) and emphasised in bold. ES: 

Effect Size; C.I.: Confidence Interval 

Variable Swill Comparison p value ES; 90% C.I. Descriptor 

Thermal Control Menthol   0.001* 0.66; 0.34 to 0.96 Moderate 

Sensation  Carbohydrate 0.835 0.04; -0.26 to 0.34 Trivial 

  Water 0.878 0.06; -0.24 to 0.36 Trivial 

 Menthol Control   0.001* -0.66; -0.96 to -0.34 Moderate 

  Carbohydrate   0.001* -0.71; -1.01 to -0.40 Moderate 

  Water   0.001* -0.66; -0.97 to -0.35 Moderate 

 Carbohydrate Control 0.835 -0.04; -0.34 to 0.26 Trivial 

  Menthol   0.001* 0.71; 0.40 to 1.01 Moderate 

  Water 0.965 0.02; -0.28 to 0.33 Trivial 

 Water Control 0.878 -0.06; -0.36 to 0.24 Trivial 

  Menthol   0.001* 0.66; 0.35 to 0.97 Moderate 

  Carbohydrate 0.965 -0.02; -0.33 to 0.28 Trivial 

Thirst Control Menthol   0.001* 0.75; 0.43 to 1.06 Moderate 

  Carbohydrate 0.134 0.26; -0.05 to 0.56 Small 

  Water   0.011* 0.33; 0.02 to 0.63 Small 

 Menthol Control   0.001* -0.75; -1.06 to -0.43 Moderate 

  Carbohydrate   0.022* -0.55; -0.85 to -0.24 Small 

  Water 0.263 -0.49; -0.79 to 0.18 Small 

 Carbohydrate Control 0.134 0.26; -0.56 to 0.05 Small 

  Menthol   0.022* 0.55; 0.24 to 0.85 Small 

  Water 0.259 -0.07; -0.37 to 0.23 Trivial 

 Water Control   0.011* -0.33; -0.02 to 0.44 Small 

  Menthol 0.263 0.49; -0.18 to 0.79 Small 

  Carbohydrate 0.259 0.07; -0.23 to 0.37 Trivial 
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6.4 Discussion 

The aim of this study was to assess physiological and subjective responses to CHO and 

menthol mouth swilling, at rest under thermally challenging conditions, by employing a 

randomised tasting order in a quasi-blinded fashion.  

Thermal Sensation was significantly improved, to a moderate degree by menthol in 

comparison to all other conditions. This finding has been reported repeatedly when 

menthol is applied to the oral cavity (Mündel and Jones, 2009; Stevens, Thoseby, et al., 

2016; Flood, Waldron and Jeffries, 2017), and topically by other researchers (Barwood, 

Corbett and White, 2014; Gillis et al., 2016). However, we are the first group to document 

that this effect remains when nutrition (CHO intake) is accounted for statistically. This is 

important given the documented and potential use of menthol mouth swilling as an 

ergogenic aid during endurance exercise in thermally challenging conditions (Stevens, 

Thoseby, et al., 2016; Stevens and Best, 2017; Best, Payton, et al., 2018).  

Further, this suggests that menthol mouth swilling has the potential to be incorporated 

alongside other nutritional practices that may not alter TS such as CHO intake during or 

following exercise. Such findings may be of use to athletes undertaking heat acclimation 

training, whereby the heat stimulus may be applied actively i.e. during exercise (Périard, 

Racinais and Sawka, 2015; Willmott et al., 2016; Stevens, 2018), passively via hot-water 

immersion (Zurawlew et al., 2016; Zurawlew, Mee and Walsh, 2018), or a sauna during 

recovery from exercise (Stanley et al., 2014). 

Alternatively, in competition this finding allows athletes to pursue complementary 

nutrition and thermal ergonomic strategies, potentially mitigating commonly reported 

issues during prolonged exercise (in the heat) such as gastrointestinal distress (Costa et al., 

2017; Costa, Hoffman and Stellingwerff, 2018) or taste fatigue (Costa, Hoffman and 

Stellingwerff, 2018). This finding also has relevance to armed or emergency service 

personnel, who may have to report rapidly to situations in thermally challenging 

environments, potentially in varying states of nutritional preparedness. 

Thirst, on the other hand, may be a key indicator of physiological readiness in these 

professions, and in prolonged endurance activity may also convey homeostatic 

information. Menthol mouth rinsing likely satiates thirst via a pre-absorptive pathway 

(Eccles, Du-Plessis, Dommels and Wilkinson, 2013) through stimulation of oral cold 

receptors (Eccles, 2000b; Eccles, Du-Plessis, Dommels and Wilkinson, 2013), 

concomitantly conferring an hedonic effect, effectively mimicking a cold beverage. The 

hedonic relationship between beverage temperature is well described in humans 

(Brunstrom and Macrae, 1997; Mündel et al., 2006; Burdon et al., 2012), and has been 
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shown to occur in rodents even in the absence of thirst or water deficit (Torregrossa et al., 

2011). Therefore, when implementing mouth-swilling protocols, menthol’s ability to 

attenuate thirst significantly, to a small to moderate extent, is something practitioners and 

scientists must consider. It is not clear from this investigation whether a brief application 

of menthol in a mouth-swill can alter exercise or thermoregulatory behaviours to the extent 

that they become detrimental to the individual in question. It would be prudent to 

recommend that menthol mouth-swilling be employed in compensable heat stress, in 

exercise durations whereby muscle glycogen concentration is not also a limiting factor, so 

reducing the need for further nutritional support e.g. events lasting ~60 min, or sports 

divided into periods of play. If athletes and practitioners still wish to employ menthol 

mouth-swilling in events outside of these constraints, then the co-implementation of other 

pre, or per-cooling strategies may be warranted (Bongers et al., 2014; Stevens et al., 2017; 

Best, Payton, et al., 2018), and these should be accompanied by athlete or user education 

strategies from the supporting practitioner(s).  

Thermal Comfort was also improved to a small extent by menthol mouth swilling when 

compared to CHO (-0.33; -0.63 to -0.03) and water (-0.40; -0.70 to -0.10). Conversely, 

menthol was trivially different to CON, displaying a broader confidence interval than for 

TS. Thermal comfort may be susceptible to a time effect in this investigation despite the 

randomised swilling order, as evidenced by participants reporting that CON was more 

thermally comfortable to a small extent, in comparison to CHO (p<0.062) and water 

(p<0.002) swills. As time progressed, participants may have experienced greater 

awareness of tactile elements of their environment such as the wettedness of clothing, local 

skin wettedness or the texture of the chair on which they were sat, as longer exposure to a 

hot environment elicits and accumulates a greater volume of sweat, through which a 

participant must interact with their tactile environment. Incorporating local measures of 

TC and skin wettedness in subsequent investigations would allow for greater precision in 

this hypothesis. 

Heart rate and Ttym behaved differently over the course of the investigation. This is 

somewhat counterintuitive as typically we would expect a concomitant increase in both 

metrics over time, but not necessarily in response to swills. The expected time course 

response would be attributed to progressive heat load (Périard, Racinais and Sawka, 2015; 

Périard et al., 2016), yet in the present investigation each swill appeared to produce a 

different response. When compared to the CON period, both water and CHO elicited small 

increases in HR, whereas menthol did not.  
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With respect to menthol, our findings are in keeping with those of Shepherd and Peart 

(2017) who rebutted the results of Meamarbashi and Rajabi (2013), who asserted that 10 

days of supplementation with a peppermint oil solution has a stimulatory effect, increasing 

maximal HR achieved during a maximal exercise test by 8%, and also increasing a 

complement of other exercise associated variables. The small increases in HR observed 

during water and CHO swilling appear counterintuitive from a sport and exercise 

scientist’s perspective, as an increase in HR would confer a cost to the athlete, especially 

in a hot environment, where factors such as increased sweat rate, resultant dehydration and 

increased skin blood flow already add to the thermal physiological strain experienced by 

the athlete (Racinais et al., 2015). Yet at rest when paired with a pleasant stimulus, these 

responses are perfectly normal (Leterme et al., 2008; Verastegui-Tena, van Trijp and 

Piqueras-Fiszman, 2018). Indeed, these responses have been noted to be goal directed 

(Richter and Gendolla, 2009; Brinkmann and Franzen, 2013), and increases in HR are 

associated with expectancy (Verastegui-Tena, van Trijp and Piqueras-Fiszman, 2018), and 

a higher perceived reward value in healthy individuals (Richter and Gendolla, 2009; 

Brinkmann and Franzen, 2013). Carbohydrate and water both confer hedonic responses 

by stimulating either receptors associated with fuel availability (Burke and Maughan, 

2014), or oral cold receptors respectively (Eccles, Du-Plessis, Dommels and Wilkinson, 

2013) , and may convey a homeostatically derived sense of reward; thus an elevation in 

HR is probable. An alternative explanation for the elevation in HR in the present study is 

that of habituation (Verastegui-Tena, van Trijp and Piqueras-Fiszman, 2018). Heart rate 

responses have been shown to be greater in response to an habituated 15.4% sucrose 

solution in comparison to water (control) or quinine solution (bitter); this response is 

consistent between exposures and independent of participant expectation (Verastegui-

Tena, van Trijp and Piqueras-Fiszman, 2018). Menthol mouth swilling on the other hand 

may be too novel a stimulus for participants to be habituated to and subsequently elicit a 

HR response, but its ability to be of hedonic value in the current investigation is evidenced 

by improvements in TC and TS. Habituation to menthol mouth swilling requires further 

investigation; frequent users of oral hygiene products may present a logical starting 

population.  

To conclude, menthol mouth swilling improves perceptions of TC and TS, and satiates 

thirst compared to mouth swilling with other solutions. Carbohydrate intake can alter the 

perceptual characteristics of other swills, and thus the nutritional state of those undertaking 

mouth swilling strategies is a key consideration for supporting practitioners and users. 

Swilling carbohydrate and water may lead to small elevations in HR, and this may be an 
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anticipatory and / or habituated hedonic response. Menthol mouth swilling only trivially 

affects HR, but habituation to menthol mouth swilling warrants further exploration.   
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Chapter 7 : MENTHOL MOUTH SWILLING AND 

RUNNING PERFORMANCE AT DIFFERENT 

INTENSITIES AND TEMPERATURES4 

 

Menthol is used to evoke pleasant feelings of coolness and freshness. Sports science has 

focused upon the topical or oral application of menthol to athletes, either directly on the 

skin or menthol soaked garments, and as a mouth rinse or in beverages. Interest has largely 

been in endurance activity, with increased time to exhaustion and time trial performance 

shown. Participants are also typically of limited or recreational fitness, therefore we 

recorded the perceptual responses to menthol mouth rinsing in trained endurance runners, 

at typical training and racing intensities. Seven runners (5km PB: 15:24 ± 00:39) 

completed a modified running economy test (14 – 20km.h-1) and 1km time trial in 15°c 

and 28°c, with (+M) and without menthol. Physiological variables (V̇O2, V̇E, HR, [La]) 

and accompanying differential ratings of perceived exertion were assessed. Thirst, 

Thermal Comfort (TC) and Thermal Sensation (TS) were also recorded.  

Respiratory measures (V̇O2 and V̇E) showed predominantly unclear responses throughout 

the running economy test and 1km time trial, however V̇E tended to increase following 

menthol use in 28ºC. Large reductions in RPEover were noted post time trial in 28ºC+M, 

but this may be explained by a more conservative pacing strategy. Unclear responses for 

TS were found within temperatures, but increased between temperatures. Thirst and TC 

responses were unclear within temperatures, but thirst was elevated at higher speeds 

between temperatures. Finally, TC was improved at 16 and 18km.h-1in 15ºC+M. These 

varied responses suggest either an individual tolerance to menthol, or that trained athletes 

are less susceptible to the perceptual thermal challenges of exercise, than previously 

studied lesser trained populations.  

 

7.1 Introduction 

To date, menthol mouth swilling work in runners has been confined to time trial models 

(Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016), and this model has also 

been used to assess topical application of menthol (Barwood, Corbett and White, 2014). 

These studies have also limited their athletes to 5km time trial simulations. Whilst a good 

 

4 This work was funded by the British Milers Club Frank Horwill Scholarship 2016. This 

work was presented in part at the Sport and Exercise New Zealand Conference 2017. 
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representation of the competitive demands of running competition, especially in the work 

of Stevens, who used a non-motorised treadmill (Stevens, Bennett, et al., 2016; Stevens, 

Thoseby, et al., 2016), athletes may also utilise nutritional strategies in training sessions 

(Stellingwerff, Boit and Res, 2007; Thomas, Erdman and Burke, 2016; Costa et al., 2017), 

and are encouraged to do so in preparation for competitive events (de Oliveira, Burini and 

Jeukendrup, 2014; Jeukendrup, 2014). The only work to date that has assessed oral 

menthol application in a simulated training session is that of Tran Trong and colleagues 

(Tran Trong et al., 2015) during a simulated ‘brick session’, consisting of three blocks of 

4km cycling and 1.5km running, in trained triathletes (V̇O2max 59±11ml.min-1.kg-1). An 

experimental design that considers both training and racing velocities in trained runners is 

required to extend the knowledge pool beyond self-paced time trials, and potentially 

ascertain if menthol mouth-swilling demonstrates greater effects on pertinent 

physiological, subjective and ventilatory variables at typical training or racing paces. 

Running economy (RE) assessments identify the cost of running at a given speed. Such 

tests have been shown to be reliable with a low coefficient of variation in well-trained 

athletes (Saunders, Pyne, Telford and Hawley, 2004b), and normative values are available 

across a range of paces (Barnes and Kilding, 2015). Sixteen kilometres per hour is often 

the speed at which RE assessments take place, given its submaximal intensity in well-

trained runners (A. M. Jones, 2006). Saunders improved upon this by developing a multi-

stage assessment, consisting of three four-minute stages at submaximal intensities of 14, 

16 and 18km.h-1 (Saunders, Pyne, Telford and Hawley, 2004b). A multi-stage model 

allows for deeper understanding of the cost of typical training intensities within and 

between athletes, but is representative of neither the competitive demands nor the 

physiological intensities of racing.  

Running economy is typically expressed as the oxygen cost (V̇O2) required to run at a 

given speed, which is then tracked over time within athletes (A. M. Jones, 1998; 2006), 

and between athletes and paces (Saunders, Pyne, Telford and Hawley, 2004b; Millet, 

Hoffman and Morin, 2012; Hoogkamer et al., 2016). However, suggestions that a more 

appropriate expression of running economy may be to describe running economy per unit 

of distance covered (L.km-1 and ml.km-1.kg-1), or as an energetic cost over time (kcal.min-

1) or distance (kcal.km-1), have also been made (Foster and Lucia, 2007; Fletcher, Esau 

and MacIntosh, 2009; Shaw et al., 2013; Barnes and Kilding, 2015; Shaw et al., 2015).  

Irrespective of how it is expressed, RE is considered a key differentiator between athletes 

of similar aerobic capabilities i.e. V̇O2max (Bassett and Howley, 1997; 2000; Saunders, 

Pyne, Telford and Hawley, 2004b; Joyner and Coyle, 2008; Barnes and Kilding, 2015). 
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Further support for RE’s position as a key performance determinant comes from case 

studies of champion athletes who demonstrate exceptional RE values (A. M. Jones, 1998; 

2006; Lucia et al., 2008). These values are typically exhibited in long-distance as opposed 

to middle-distance runners (Sjödin and Svedenhag, 1985; J. Daniels and N. Daniels, 1992; 

Barnes and Kilding, 2015). It is hypothesised that improved RE is accrued over time, 

resulting from chronic training volumes (Scrimgeour et al., 1986), but RE is also 

influenced by anthropometric (Saunders, Pyne, Telford and Hawley, 2004a; Lucia et al., 

2006; Barnes and Kilding, 2015; Dervis et al., 2016), biomechanical (Saunders, Pyne, 

Telford and Hawley, 2004a; Foster and Lucia, 2007; Rogers et al., 2017; Marcello, B. K. 

Greer and A. E. Greer, 2017), and environmental factors (Maughan, 2010; Ely et al., 2010; 

Junge et al., 2016). Running economy is also postulated to have a genetic component, 

despite an absence of clear evidence (Scott and Pitsiladis, 2007; Joyner and Coyle, 2008). 

As RE is multifaceted, it follows that interventions have attempted to target differing 

contributing systems. Most recently, novel footwear technologies have been shown to 

induce improvements in RE (Hoogkamer et al., 2017). Tried and tested methods such as 

strength training (Paavolainen et al., 1999; Saunders, Pyne, Telford and Hawley, 2004a; 

Barnes and Kilding, 2015) and plyometrics (Dumke et al., 2010) have also been shown to 

promote improvements in RE. These methods focus primarily on biomechanical and 

physiological alterations within the lower leg musculature, increasing elastic storage and 

energetic application and return through the ground (Foster and Lucia, 2007; Barnes and 

Kilding, 2015; Rogers et al., 2017). Nutritionally, carbohydrate (Rapoport, 2010; 

Stellingwerff and Cox, 2014; Jeukendrup, 2014; Stellingwerff, 2016),  and dietary nitrate 

(A. M. Jones, 2014; Pawlak-Chaouch et al., 2016) have been shown to positively influence 

the oxygen cost of running, whereas dietary fat intake adversely affects exercise economy 

(Burke, 2015; Volek et al., 2016; Burke et al., 2017). If menthol mouth-swilling is to be 

considered a potential adjunct to runners’ performance nutrition strategies, its effects upon 

physiological variables, namely RE, should be assessed at a range of speeds associated 

with training and racing in differing environmental conditions. Hence, the aim of this study 

was to investigate the effects of menthol mouth swilling upon physiological and perceptual 

variables at differing speeds and temperatures, representative of British training and 

competitive environments.   
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Table 7-1 References values for V̇O2max, based upon competitive level of athlete, adapted from Jones 

(2007; p152). Relative values are shown as opposed to absolute, as this is preferred when describing runners. 

Level V̇O2max 

World class Male 80 - 90 ml.kg-1.min-1 

International Male 70 - 80 ml.kg-1.min-1 

National Male 65 - 75 ml.kg-1.min-1 

Junior National Male 60 - 70 ml.kg-1.min-1 

 

 

7.2 Materials and Methods 

This study employed a post-only crossover design, in which participants served as their 

own controls. Experimental effects were derived from between condition comparisons and 

individual responses to each condition over time. Ethical approval for this investigation 

was granted by the Teesside University School of Social Sciences, Business and Law 

ethics board. 

Prior to study commencement, participants completed a modified running economy test 

(Saunders et al., 2004b) to establish V̇O2max, and familiarise participants with blood lactate 

([La]) sampling and reporting of dRPE values, using the CR100 scale (E. Borg and G. 

Borg, 2002). This session also served to familiarise participants with the experimental 

warm-up procedure and testing environment.  

Nutritional intake was recorded via a 24-hour food recall preceding the first experimental 

session, with participants encouraged to consume a typical diet throughout the testing 

period. The 24-hour recall served as a template that participants aimed to replicate 

throughout the testing period, with a view to increasing experimental and ecological 

validity. Experimental sessions comprised four laboratory visits (one visit per condition: 

14ºC and 28ºC, with and without menthol mouth swilling), with trial order assigned via a 

Latin square design, as per a customised spreadsheet (Pezzullo, 1999). All experimental 

sessions took place in an environmental chamber, with participants wearing a harness in 

case of involuntary collapse when exercising. Humidity was fixed at 10% and wind speed 

at 0 m.s-1 to mitigate cooling or heat storage effects driven by environmental factors 

beyond temperature. Water was available ad-libitum at room temperature during exercise. 

 

7.2.1 Participants 

Seven male athletes took part in this investigation; participant information is presented 

below (Table 7.2). Participant attrition was low, but due to other racing commitments and 
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injury only 4 of the 7 participants provided a complete data set for all trials. Injury was not 

brought about by participation in this study. Testing sessions were incorporated into the 

participants’ training schedule by their coach and would replace a weekly interval session. 

Training volume was requested to be maintained throughout the testing battery so results 

would be indicative of each athlete’s typical abilities, and not the product of an increase 

or reduction in training volume. Athletes were requested to wear their preferred light 

training clothing e.g. shorts and singlet and racing flats to increase ecological validity. 

Nutritional intake was recorded prior to the first testing session via 24-hour recall, and 

participants were encouraged to consume a typical diet throughout the testing procedure. 

The 24-hour recall served as a template that participants aimed to replicate throughout 

their involvement in the testing, so dietary preparations were representative of habitual 

nutrition intake.  

 

Table 7-2 Participant Anthropometric, Performance, Physiological and Training Characteristics 

Participant Height (cm) Weight (kg) Age (y) 5km P.B. 

(mm:ss) 

1 SG 177.0 64.0 18.9 16:28 

2 HBT 170.0 58.0 17.1 15:43 

3 HA 175.0 66.4 18.1 15:46 

4 DN 175.0 56.0 20.8 15:37 

5 DS 183.0 67.9 27.9 14:20 

6 RB 178.0 73.1 26.3 14:27 

7 LGT 172.0 55.9 29.3 15:06 

Mean ± SD 175.7 ± 3.9 63.0 ± 6.1 22.6 ± 4.7 15:21 ± 00:43 

 

7.2.2 Modified running economy test 

Before undertaking any recorded exercise, participants completed a fixed warm up of 10-

minutes at 10km.h-1 on the same make and model of treadmill they would perform the 

running economy test on (h/p/cosmos Pulsar; h/p/cosmos Sports & Medical GMBH; 

Nussdorf-Traunstein, Germany).  

Given the trained nature of the participants, and their typical race velocities, a modified 

version of Saunders et al (2004b) running economy test was designed to assess the effect 

of temperature and mouth swill upon running economy, and associated variables (see 

Outcome measures). A similar adaptation to match athletes’ characteristics has been 

documented in the literature (Lucia et al., 2006; Lucia et al., 2008). The test consists of 
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the athlete completing 4-minute stages interspersed with 1-minute recoveries at increasing 

intensities. Saunders’ protocol consists of three stages of 14, 16 and 18 km.h-1 (Saunders 

et al., 2004b). Our modified version of the protocol included a 20km.h-1 stage, as this is 

representative of 5km or 10km race speed(s), depending upon the athlete in question 

(Table 7.2), and so is a pertinent speed to the sample. Participants then undertook their 

final 1-minute recovery before completing a 1km time trial. Respiratory measures were 

taken throughout the final two minutes of each stage (see Outcome measures), blood 

lactate [La] values were obtained from a sample taken from the non-dominant ring finger 

and analysed subsequently (YSI 2700 Select, YSI (UK) Ltd., Hampshire, United 

Kingdom). Heart rate (HR) values were recorded 30 seconds prior to stage completion 

using telemetry (Polar RS400; Polar, Helsinki, Finland). Subjective measures and 

tympanic temperature were recorded immediately following the completion of the stage. 

If swilling was required, this too would be completed during recovery. Participants would 

ingest 25ml of 0.1% menthol mouth swill and swill for 10-seconds before expectorating 

the solution and readying themselves for commencement of the next stage. Solution was 

provided in 25ml plastic containers, on a table in the environmental chamber that was 

positioned to mimic that of a feeding station in a race (waist height and at the runners’ 

side). Participants were provided with a larger (250ml) cup for expectorated solution.  

 

7.2.3 1km time trial 

Participants completed the 20km.h-1 stage and 1-minute recovery. The treadmill belt speed 

was maintained at 20km.h-1, distance was monitored via linked software (Polar, Helsinki, 

Finland). Participants then resumed running and signalled to the researcher to increase, 

decrease or maintain treadmill belt speed, using hand gestures. A ‘thumbs up’ position was 

held to increase belt speed, a ‘thumbs down’ signal was used to signal a decrease in speed; 

speed was adjusted in 0.1km.h-1 increments. Speed was maintained if no hand signal was 

used. Treadmill speed and heart rate were recorded at 30-second intervals throughout the 

time trial. Time to complete the 1km was timed using a stopwatch. Respiratory measures 

were taken throughout the entire time trial, blood lactate values, subjective measures and 

tympanic temperature were recorded upon completion of the time trial. Verbal 

encouragement was provided by the researcher throughout the trial to mimic a race 

environment and encourage a maximal effort. Feedback was provided on distance 

remaining in 200m intervals to replicate the feedback an athlete would obtain when 

running on a 400m athletics track e.g. ‘One lap to go! Come on!’. No time constraints were 

imposed upon the athletes to complete the time trial. Upon completion of the 1km time 
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trial and associated measures, participants were escorted from the chamber and completed 

a 10-minunte cool down at 10km.h-1 on the same treadmill that they had warmed up on. 

 

7.2.4 Conditions 

Warm-up and cool down running took place outside of the environmental chamber in 

ambient laboratory conditions. All testing took place in an environmental chamber, with 

participants wearing a harness in case of involuntary collapse when exercising maximally. 

Environmental conditions were selected to mimic British/European racing temperatures 

whilst maximising heat storage responses during Hot trials. Cold trials were conducted in 

14°c and Hot trials were conducted in 28°c. For all trials humidity was fixed at 10% and 

wind speed at 0 m.s-1 to mitigate cooling effects driven by environmental factors beyond 

temperature and to maximise rates of heat storage. Menthol mouth swilling was 

administered during recoveries for Hot+M and Cold+M conditions. Water was available 

ad-libitum during recoveries and post-exercise.  

 

7.2.5 Outcome measures 

7.2.5.1 Physiological measures 

V̇O2 (ml.min-1 and ml.kg-1.min-1) and VE (L.min-1) were assessed using breath by breath 

analysis (Piston HD6000, nSpire, nSpire Health Inc, Hertford, UK) for the final two 

minutes of each stage. Respiratory data was collected for the entire 1km time trial. Breath 

by breath V̇O2 was averaged for each stage. From this data was filtered using conditional 

formatting to obtain 30 seconds of data that was ± 50ml from the mean. This method was 

chosen as steady state oxygen consumption has previously been defined as an increase of 

>100ml O2 over the final two minutes of the stage (Fletcher, Esau and MacIntosh, 2009). 

For the 1km time trial section of the test peak V̇O2 (V̇O2peak) and V̇E values were recorded, 

as this better reflects the maximal demands of the activity than a mean value due to 

individual variation in V̇O2 kinetics and absence of a steady state during the time trials.  

Samples to be analysed for [La] were obtained from the non-dominant ring-finger using a 

lancet and collected in a capillary tube for automated analysis by a YSI 2700 Select 

analyser (YSI (UK) Ltd., Hampshire, United Kingdom) via a 25 μL sample and 

immediately analysed. 

Temperature was recorded prior to the test session, and upon completion of each stage. 

Temperature was assessed using a tympanic thermometer (±0.1°c; Braun Thermoscan 5; 

Braun, Braun GmbH, Kronberg, Germany) and disposable caps, with measures taken from 
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the left ear. Temperature was assessed prior to the administration of the menthol, so any 

potential increase in temperature caused by swilling or local irritation would be mitigated.   

 

7.2.5.2 Subjective measures 

Subjective measures were assessed using validated rating scales, with accompanying 

descriptors. Thirst was assessed via Engell’s scale (Appendix 3; (Engell et al., 1987), 

ranging from ‘Not at all thirsty’ to ‘Extremely thirsty’. Zhang et al.’s scales of thermal 

comfort (TC) and thermal sensation (TS) were used to assess these qualities (Appendix 2 

(Zhang et al., 2004). Both scales range from -4 to +4, with polar descriptors of Very 

Uncomfortable: Very Comfortable, and Very Cold: Very Hot, respectively. As a point of 

difference, the TC scale contains values of -0 and +0 to numerically describe just 

uncomfortable and just comfortable, respectively (Zhang et al., 2004). Borg’s CR100 scale 

(E. Borg and G. Borg, 2002) with idiomatic English verbal descriptors (Appendix 1) was 

used to assess dRPE. This differential approach assessed RPE at the legs (RPElegs), lungs 

(RPElungs) and overall (RPEover). 

 

7.2.5.3 Time Trial Performance 

Time trial performance was quantified as the time taken to complete 1km. Mean running 

speed was calculated upon completion, as the mean of the speeds recorded at 30 second 

intervals throughout. These speeds were also plotted per athlete, per condition to visualise 

pacing strategies.  

 

7.2.4 Statistical Analyses 

Data were analysed using standardised mean differences, via a customised 

spreadsheet(Hopkins, 2006). Magnitudes of effects were based upon standardised 

thresholds for Small (0.2), Moderate (0.6), Large (1.2) and Very Large (2.0) changes of 

standard deviations (Hopkins, Marshall, Batterham and Hanin, 2009), irrespective of 

outcome measure. Raw data are presented as mean ± SD. Standardised mean differences 

are presented as effect sizes (ES) ± 90% confidence intervals (C.I.). 

Due to not meeting the demands of the testing sessions, as evidenced by performance 

outcomes and the ability of this data to notably alter the group mean(s), Participant 1 

presented as a strong outlier, but did undertake all testing conditions. For this reason, data 

for 1km time trial are presented with and without Participant 1.  
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7.3 Results 

Effect statistics for all dependent variables are presented in Tables 7.3 and 7.4 (ES ± 90% 

C.I.) per stage and by condition interactions e.g. Cold vs. Hot. Confidence intervals that 

do not overlap zero are denoted by an asterisk.  

  

7.3.1 Physiological Measures 

7.3.1.1 Respiratory measures 

When respiratory measures between Cold and Cold+M conditions were compared, 

differences across all speeds for V̇E and V̇O2 were unclear, except for a small increase 

(ES: 0.4 ± 90% CI: 0.34) in V̇E at 16km.h-1. V̇O2 presented unclear differences across all 

speeds when Hot and Hot+M conditions were compared, whereas, V̇E trended towards an 

increase at all speeds, but standard deviations and confidence intervals overlapped zero 

(Table 7.2).  

Between temperatures (Cold vs. Hot), there was an inverse relationship between 

differences in V̇E and running speed (Table 7.2), ranging from Moderate to Small in 

magnitude. This trend was not apparent between temperatures for V̇O2. Between 

mentholated conditions, Cold+M and Hot+M, similar differences in V̇E were observed, 

but confidence intervals overlap zero suggesting a less consistent effect because of 

menthol mouth-swilling. Differences between V̇O2 are similarly inconsistent, but trend 

towards a reduction in the heat as speed increases. However, these differences present with 

relatively broad standard deviations (Raw difference: -0.5 ± 3.2 to -3.7 ± 8.4ml.kg-1.min-

1). Effects upon V̇E and V̇O2 were all unclear, at all speeds in the remaining comparisons, 

with V̇E effects showing greater variability (Table 7.2). 

During the time trial component (Table 7.3) V̇O2peak was not affected by temperature nor 

menthol mouth-swilling; V̇E however, differed between temperatures by a Small to 

Moderate extent with lower V̇E values observed in hot conditions, but V̇E was not affected 

by menthol mouth-swilling.   

 

7.3.1.2 Heart Rate, Lactate and Tympanic temperature 

Heart rate increased following menthol mouth swilling in cold conditions (Cold+M), with 

the most notable and consistent difference occurring during the 1km time trial (Small; 0.54 

± 0.5). Similar trends were seen in hot conditions (Hot vs Hot+M) at lower speeds (14 and 

16km.h-1), but this effect diminished as running speed increased. HR was elevated in the 

heat, relative to cold condition (Cold vs. Hot), with the most pronounced difference 

occurring at 16 km.h-1 (Large; 1.65 ± 0.53), and decreasing in magnitude as running speed 
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increased (Moderate to Trivial). There was no clear trend when comparing mentholated 

conditions (Cold+M vs. Hot+M). Remaining comparisons also demonstrate non-uniform 

effects, that may be driven either by menthol mouth-swilling or an elevated HR due to heat 

exposure.  

Menthol mouth swilling led to a progressive increase in Ttymp in cold conditions (Cold vs. 

Cold+M). Differences in Ttymp showed a progressive, near linear increase in magnitude as 

speed increased from pre-test (-0.16 ± 0.5; Trivial), to 1km time trial completion (1.01 ± 

0.58; Large). Conversely, there is an absence of such a trend between Hot and Hot+M 

conditions. Small reductions in Ttymp are seen prior to the test commencing (-0.22 ± 0.18), 

and upon time trial completion (-0.56 ± 0.38), but all other speeds were trivially different 

between Hot conditions.  

Between temperatures (Cold vs. Hot) Large to Very Large differences in Ttymp were found 

across all speeds. When menthol-swilling conditions (Cold+M vs. Hot+M) were 

compared, Ttymp is elevated across the testing bout (0.7 to 1.4ºC), but effects show broader 

confidence intervals (Table 7.2). Remaining comparisons support that heat consistently 

elevates HR beyond the effects observed when menthol is swilled in Cold conditions. 

 

[La] values demonstrated trivial reductions in response to menthol mouth swilling in Cold 

conditions, at all sub-maximal speeds, however [La] values were higher upon time trial 

completion in Cold+M condition (0.7 ± 0.9 mmol.L-1; ES: 0.31 ± 0.43). 

Differences between Hot and Hot+M were non-uniform across sub-maximal speeds, but 

displayed a pronounced reduction post-time-trial when menthol was swilled in the heat (-

2.3 ± 3.1 mmol.L-1; ES: -1.08 ± 1.44). [La] values in Hot were elevated when compared 

to Cold at all speeds, despite no differences prior to test commencement, again this 

difference was greatest upon time trial completion (2.6 ± 3.4 mmol.L-1; ES: 1.2 ± 1.57). 

When menthol mouth-swilling conditions are compared (Cold+M vs. Hot+M), all speeds 

display wider confidence intervals than their respective standardised mean differences but 

there is a tendency for [La] to be elevated. This heat induced increase in [La] is also evident 

in remaining comparisons, with the greatest magnitudes of difference seen when Cold and 

Hot+M conditions are compared (Table 7.2).  

 

7.3.2 Subjective Measures 

7.3.2.1 Differential Ratings of Perceived Exertion 

In Cold conditions, menthol mouth swilling (Cold+M) tended to increase dRPE values, 

particularly in RPElung and RPEover, but these effects had confidence intervals overlapping 
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zero. All dRPE values were elevated following completion of the time trial in Cold+M 

(RPEover 3.6 ± 5.8; RPElegs 4 ± 5.2; RPElung 5.4 ± 9.2. All differences reported as arbitrary 

units). 

Large (-1.99 ± 1.57) reductions in RPEover upon time trial completion (-14 ± 11.1 arbitrary 

units) was seen when menthol was swilled in the heat (Hot+M). This effect was likely a 

manifestation of reductions in RPElegs (-9.5 ± 11.4 arbitrary units) and RPElung (-4.5 ± 11.2 

arbitrary units). These effects were not observed at lower speeds in the heat (Hot vs. 

Hot+M). 

Heat (Hot) tends to elevate RPEover in comparison to Cold conditions, but this is not 

supported by other dRPE values, except for RPElung which upon time trial completion is 

moderately elevated (ES: 0.69 ± 0.56) in Hot+M conditions. When menthol mouth 

swilling conditions are compared (Cold+M vs. Hot+M) there is no apparent trend in dRPE 

values at sub-maximal speeds, but dRPE values and effects were lower in Hot+M upon 

time trial completion, albeit with broad confidence intervals. No clear trends were 

observed for remaining comparisons. 

 

7.3.2.2 Thermal Comfort, Sensation and Thirst 

Raw differences of TC, TS and Thirst for comparisons within temperatures (Cold vs 

Cold+M and Hot vs Hot+M) and Cold vs. Hot conditions are presented in Figure 7.1.  

TC may be improved in Cold+M relative to Cold, with menthol induced reductions in TS 

also seen at lower speeds, whereas thirst is lowered on average at higher running speeds 

(Figure 7.1). Counterintuitively, in Hot conditions menthol mouth swilling (Hot+M) may 

elevate TS and thirst, whilst also improving TC, although these effects are highly variable. 

Between temperatures (Cold vs. Hot) TS is elevated to a Large to Very Large extent, with 

greater effects observed at lower running speeds (Table 7.2). Despite the clear differences 

in TS, differences in TC and thirst are not as consistent between temperatures. When 

menthol containing conditions are compared (Cold +M vs. Hot+M), TS is elevated in 

Hot+M, the difference (2.8 ± 0.6 to 1 ± 0.5) and magnitude (Very Large to Large) of which 

also declines as exercise intensity increases. Differences in TC are unclear, with 

differences in Thirst between Cold+M and Hot+M also variable. Similar elevations in TS 

brought about by heat are seen in remaining comparisons, with or without menthol mouth 

swilling (Cold vs Hot+M and Cold+M vs Hot), with tendencies toward a decrease in TC 

and Thirst also noted.   
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Figure 7-1 Raw differences (mean ± standard deviations; arbitrary units) 

in Thermal Comfort (Panel A), Thermal Sensation (Panel B) and Thirst 

(Panel C) at baseline and throughout the testing protocol, within and 

between temperatures. Numeric values are xkm.h-1; TT: Time Trial 
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7.3.3 Time Trial Performance 

Within cold conditions (Cold vs. Cold+M) differences in time trial performance were 

unclear (-0.28 ± 0.56).  Increases in time trial performance of equal measure were seen 

when Hot+M and Hot, and Hot and Cold+M conditions were compared (+4.1 ± 7.2 

seconds; ES: 0.22 ± 0.39). Heat exerted a deleterious effect on time trial performance i.e. 

Hot and Cold (0.35 ± 0.22; Small) and Hot+M and Cold (0.35 ± 0.22; Small), with 

differences between menthol treatment conditions the most pronounced but showing the 

greatest variability: Hot+M and Cold+M (0.71 ± 0.61; Moderate). Individual and mean 

pacing profiles per condition (Figure x; panels A-D), and between condition mean pacing 

profiles (Figure 7.3; panel E) are depicted below. Data are also shown with the outlying 

athlete removed (Figure 7.3; panels A-D) and how this influenced mean responses (Figure 

7.3; panel E).  
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Figure 7-2 Individual and mean (Panel E) 1km time trial performances in Cold (Panel A) and Hot (Panel C) 

conditions, with (Panel B: Cold + M; Panel D: Hot + M) and without menthol mouth swilling. Standard 

deviations are not presented in Panel E due to the presentation of individual curves in panels A-D. 

 

 



 134 

 
Figure 7-3 Individual and mean (Panel E) 1km time trial performances in Cold (Panel A) and Hot (Panel C) 

conditions, with (Panel B: Cold + M; Panel D: Hot + M) and without menthol mouth swilling, with the 

outlying athlete removed. Standard deviations are not presented in Panel E due to the presentation of 

individual curves in panels A-D. 
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Table 7-3 Effect Size and 90% Confidence Intervals for all outcome measures, with the exception of time trial performance, as compared between conditions and 

temperatures, plus remaining contrasts 

Parameter Cold vs. Cold+M Cold vs. Hot Hot vs. Hot+M 
Cold+M vs. 

Hot+M 
Cold+M vs. Hot Cold vs. Hot+M 

14km.h-1       

V̇O2 0.25 ± 1.01 -0.04 ± 0.68 -0.02 ± 0.8 -0.11 ± 1.03 -0.13 ± 0.74 -0.04 ± 0.68 

V̇E -0.23 ± 0.58 -0.93 ± 0.8* 0.24 ± 0.49 0.33 ± 0.55 0 ± 0.47 -0.09 ± 0.53 

HR 0.34 ± 0.41 0.95 ± 0.65* 0.1 ± 0.61 0.27 ± 1.13 0.69 ± 0.66* 0.61 ± 0.29* 

[La] -0.30 ± 0.66 0.53 ± 1.02 -0.72 ± 2.02 0.35 ± 1.76 0.73 ± 0.47* 0.14 ± 1.08 

Ttymp 0.30 ± 0.54 1.28 ± 0.17* -0.15 ± 1.29 1.02 ± 1.18 0.98 ± 0.41* 1.17 ± 1.48 

RPEover 0.07 ± 0.3 0.04 ± 0.74 0.18 ± 1.41 -0.21 ± 1.17 -0.02 ± 0.76 -0.06 ± 1.13 

RPElegs -0.08 ± 0.47 -0.20 ± 0.78 0.03 ± 1.59 -0.13 ± 1.57 0.26 ± 0.97 -0.13 ± 1.44 

RPElung 0.19 ± 0.25 -0.32 ± 0.69 0.32 ± 1.59 -0.24 ± 1.10 -0.21 ± 0.58 0 ± 1.24 

TC -0.45 ± 0.59 0.38 ± 0.82 -0.57 ± 2.55 -0.49 ± 0.73 -0.76 ± 1.37 -0.81 ± 0.38 

TS -0.29 ± 1.17 2.92 ± 0.98* 0 ± 1.4 2.92 ± 0.79* 2.73 ± 1.16* 2.34 ± 0* 

Thirst 0.36 ± 1.43 0.36 ± 0.76 0.45 ± 1.05 0 ± 1.13 0.28 ± 0.83 0.41 ± 0.56 

16km.h-1       

V̇O2 0.07 ± 0.93 0.17 ± 1.02 0.01 ± 0.87 -0.1 ± 0.65 -0.19 ± 0.21 -0.05 ± 0.79 

V̇E -0.40 ± 0.34* -0.43 ± 0.56 0.06 ± 0.16 0.35 ± 0.46 0.14 ± 0.75 -0.11 ± 0.10 

HR 1.35 ± 1.95 1.65 ± 0.53* 0.63 ± 0.69 0.27 ± 1.13 0.73 ± 1.24 2.25 ± 1.60* 

[La] 0.21 ± 0.63 0.50 ± 0.29* 0.23 ± 0.45 0.57 ± 0.86 0.26 ± 0.36 0.78 ± 0.17* 

Ttymp 0.35 ± 0.60 1.59 ± 0.53* -0.16 ± 0.56 1.33 ± 1.33 1.18 ± 0.65* 1.61 ± 1.06* 

RPEover -0.32 ± 0.80 0.48 ± 0.99 -0.62 ± 2.07 -0.51 ± 0.83 0.28 ± 0.96 -0.67 ± 0.50* 

RPElegs -0.37 ± 0.60 -0.39 ± 0.79 0 ± 1.12 -0.02 ± 0.74 0.28 ± 0.68 -0.26 ± 0.25* 

RPElung -0.15 ± 0.69 -0.32 ± 0.69 -0.04 ± 0.9 -0.4 ± 0.71 -0.07 ± 0.53 -0.34 ± 0.29* 
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TC 0.38 ± 0.50 0.38 ± 0.82 0 ± 2.05 0.18 ± 1.28 -0.60 ± 1.33 0.36 ± 1.1 

TS -0.72 ± 1.53 2.15 ± 1.43 0.45 ± 1.5 4.02 ± 1.05* 2.68 ± 1.54* 2.68 ± 1.22* 

Thirst -0.19 ± 1.19 0.38 ± 0.92 0.24 ± 1.08 0.34 ± 1.04 0.57 ± 0.83 0.51 ± 0.40* 

18km.h-1       

V̇O2 0.49 ± 1.16 -0.02 ± 0.93 0.19 ± 1.48 -0.35 ± 0.92 -0.46 ± 0.80 0.02 ± 0.79 

V̇E -0.04 ± 0.88 -0.41 ± 0.55 0.15 ± 0.33 -0.25 ± 0.36 0.04 ± 0.27 0.33 ± 0.88 

HR 1.35 ± 1.95 0.67 ± 0.53* 0.03 ± 0.69 0.2 ± 0.28 0.20 ± 0.28 0.67 ± 0.88 

[La] -0.09 ± 0.2 0.23 ± 0.14 0.14 ± 0.28 -0.02 ± 0.24 0.32 ± 0.23* 0.41 ± 0.35* 

Ttymp 0.69 ± 1.31 1.86 ± 0.76* 0.08 ± 0.12 1.49 ± 1.35* 1.16 ± 0.80* 2.18 ± 0.85* 

RPEover 0.17 ± 0.84 0.70 ± 1.15 -0.62 ± 2.07 -0.1 ± 1.2 -0.09 ± 0.96 0.21 ± 0.24 

RPElegs 0.13 ± 1.2 0.21 ± 1.48 -0.49 ± 2.39 -0.33 ± 2.04 0.50 ± 0.89 0 ± 1.89 

RPElung 0.33 ± 0.78 0.02 ± 0.40 0 ± 0.59 -0.46 ± 0.87 0.15 ± 0.48 0.08 ± 0.35 

TC 1.15 ± 1.19 0.57 ± 0.82 -0.24 ± 1.32 -0.48 ± 1.55 -0.85 ± 0.98 0.16 ± 0.72 

TS 0 ± 0.98 1.17 ± 0.62* 0.73 ± 1.72 1.77 ± 1.79 1.18 ± 0.87 1.77 ± 1.39* 

Thirst 0.19 ± 1.19 0.38 ± 0.82 0.48 ± 1.45 0.28 ± 1.38 0.37 ± 0.86 0.56 ± 0.54* 

20km.h-1       

V̇O2 0.35 ± 0.83 -0.33 ± 0.71 0.19 ± 1.34 -0.51 ± 1.17 -0.73 ± 0.84 -0.38 ± 0.87 

V̇E -0.09 ± 0.31 -0.32 ± 0.27* 0.22 ± 0.54 0.18 ± 0.42 0.04 ± 0.32 -0.10 ± 0.43 

HR 0.16 ± 0.66 0.49 ± 0.49* -0.17 ± 0.61 0.03 ± 1.04 0.43 ± 0.35 0.14 ± 1.04 

[La] -0.09 ± 0.26 0.20 ± 0.32 -0.13 ± 0.19 0.28 ± 0.40 0.28 ± 0.27* 0.08 ± 0.48 

Ttymp 0.59 ± 0.61 2.40 ± 0.71* -0.11 ± 0.63 1.13 ± 1.07* 1.77 ± 0.67* 2.40 ± 0.77 

RPEover 0.21 ± 0.37 0.21 ± 0.98 -0.06 ± 1.66 0.04 ± 0.33 0.06 ± 0.46 0.31 ± 0.42 

RPElegs 0 ± 0.52 0.12 ± 0.73 -0.15 ± 0.34 0.07 ± 0.17 0.34 ± 0.52 0.07 ± 0.76 

RPElung 0.3 ± 0.52 0.05 ± 0.52 0.23 ± 0.37 -0.03 ± 0.59 -0.09 ± 0.47 0.31 ± 0.50 

TC 0 ± 0.85 -0.18 ± 0.11 0.22 ± 1.32 0 ± 0.59 -0.41 ± 0.61 -0.15 ± 0.36 
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TS 0 ± 1.21 1.25 ± 1.43 0.89 ± 1.22 1.61 ± 1.91 1.18 ± 0.97 1.61 ± 1.45* 

Thirst -0.34 ± 0.53 0.17 ± 0.22 0.43 ± 0.92 -0.38 ± 1.03 0.91 ± 0.75* 0.75 ± 1.40 

ES ± 90 C.I. that do not overlap zero are denoted with an asterisk (*). Descriptors for magnitude of effects can be found in section 7.2.4 as per 

(Hopkins et al., 2009) 

 

Table 7-4 Effect Size and 90% Confidence Intervals for all outcome measures, with the exception of time trial performance, as compared between conditions and 

temperatures, plus remaining contrasts during 1km time trial stage 

Parameter Cold vs. Cold+M Cold vs. Hot Hot vs. Hot+M 
Cold+M vs. 

Hot+M 
Cold+M vs. Hot Cold vs. Hot+M 

V̇O2 0.14 ± 0.90 -10.9 ± 7.7 -0.47 ± 1.70 -0.26 ± 0.59 -0.50 ± 0.51 -0.08 ± 0.46 

V̇E -0.21 ± 0.32 -0.44 ± 0.30* 0.11 ± 1.09 -0.60 ± 0.59* -0.14 ± 0.48 -0.82 ± 0.34* 

HR 0.54 ± 0.50* 0.17 ± 0.69 -0.52 ± 1.13 -0.62 ± 1.32 -0.26 ± 0.58 -0.38 ± 1.23 

[La] 0.31 ± 0.43 1.2 ± 1.57 -1.08 ± 1.44 0.03 ± 0.77 0.66 ± 1.06 0.28 ± 0.99 

Ttymp 1.01 ± 0.58* 2.02 ± 0.87 -0.56 ± 0.38* 0.75 ± 1.57 1.05 ± 0.95* 1.53 ± 1.24* 

RPEover 0.51 ± 0.83 0.02 ± 0.87 -1.99 ± 1.57* -0.89 ± 1.72 0.28 ± 0.73 -0.07 ± 1.62 

RPElegs 0.41 ± 0.53 0.61 ± 0.63 -0.97 ± 1.16 -0.79 ± 1.14 0.17 ± 0.24 -0.20 ± 0.81 

RPElung 0.55 ± 0.93 0.69 ± 0.56* -0.45 ± 1.13 -0.45 ± 1.13 0.17 ± 0.24 0.40 ± 0.76 

TC 0.79 ± 1.41 0.23 ± 0.90 0.28 ± 0.67 0.20 ± 0.46 -0.46 ± 0.66 0.39 ± 0.53 

TS 0 ± 1.39 1.17 ± 1.17* 0.37 ± 0.86 1.46 ± 0.76* 1.46 ± 0.76 1.83 ± 0.86* 

Thirst -0.42 ± 1.15 0.53 ± 0.36* 0.4 ± 1.63 -0.38 ± 1.03 1.11 ± 0.98 0.83 ± 1.15 

ES ± 90 C.I. that do not overlap zero are denoted with an asterisk (*). Descriptors for magnitude of effects can be found in section 7.2.4 as 

per (Hopkins et al., 2009) 
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7.4 Discussion 

The aim of this study was to assess the effects of menthol mouth swilling upon 

performance and physiological and perceptual characteristics at running speeds and 

temperatures pertinent to British athletes. We did this by adapting Saunders’ RE protocol 

to incorporate speeds that were representative of competitive and training velocities, 

specifically adding a 20km.h-1 stage, and a 1km time trial (Saunders, Pyne, Telford and 

Hawley, 2004b). The inclusion of these speeds allowed a more rigorous assessment and 

quantification of the oxygen cost of running in trained athletes and increased the potential 

for positive findings to be applied ecologically. The inclusion of a time trial provided a 

testing element that was reflective of competitive running environments by incorporating 

a variable pace component to the testing procedure. This is best exemplified in Figures 7.2 

and 7.3, which outline the mean and individual pacing strategies adopted by each 

competitor, with most athletes displaying an ‘end spurt’ and or inverse pacing profile 

(Tucker, Lambert and Noakes, 2006; Van Biesen et al., 2016). Testing of similar durations 

to the time trial have previously been shown to be reliable in runners (Pettitt, Jamnick and 

Clark, 2012; Gama et al., 2017; McGawley, 2017; Gama et al., 2018), and may be used to 

predict performance through estimation of critical power (Vanhatalo, A.M. Jones and 

Burnley, 2011; Burnley and A.M. Jones, 2018; Gama et al., 2018). Time trials also 

typically show greater reliability than time to exhaustion tests (Laursen et al., 2007; 

Stevens and Dascombe, 2015) due to lack of confounding influences. However, time trials 

also require a commitment to producing a maximal effort, which may present a mismatch 

between performance capacity and the anticipatory performance template (Tucker, 2009; 

Foster et al., 2009). 

The time trial data from this study are counterintuitive, and counter the evidence accrued 

to date, which has shown menthol to improve running performance (Stevens, Bennett, et 

al., 2016; Stevens, Thoseby, et al., 2016), albeit over 5km as opposed to 1km. In Hot+M 

this may be a statistical artefact, due to low participant numbers of lesser ability (5km PB 

mean) completing this trial. All participants exhibit a similar performance curve with a 

substantial increase in pace in the latter half of the time trial once the outlier is removed; 

this is not sufficient to offset the lower mean speed in the first 60 seconds in comparison 

to Hot conditions, and again runs counter to previous findings. This conservative start may 

be driven by an interaction between the observed increase in V̇̇E and RPElung values at 

20km.h-1 in Hot+M conditions. Whilst an increase in V̇E has previously been reported as 

concomitant to the beneficial effects of menthol mouth swilling (Mündel and D. A. Jones, 

2009; Stevens and Best, 2017), in better trained athletes an increase in V̇E brought about 
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by menthol use may drive an increase in RPElung due to a heightened awareness of 

respiratory frequency, synonymous with exercise induced fatigue, irrespective of 

environmental conditions. This may also aid in explaining the perceived increase in thirst 

at higher speeds when Hot and Hot+M conditions are compared (Figure 7.2, Panel C), 

although the wide standard deviations around these values are acknowledged. 

In Cold+M athletes were 6.5 seconds faster on average over 1km than in the Cold 

condition (Figure 7.2, Panel E); this reduced to 1.59 seconds when the outlier was removed 

(Figure 7.3, Panel E), and so likely falls within the coefficient of variation for the 

performance. The pacing strategy adopted by athletes in the cold is seemingly more 

aggressive, yet even paced, displaying a faster starting velocity and less of an end spurt 

than in hot conditions. This difference in strategies is addressed by Tucker and in part by 

Van Biesen (Tucker, Lambert and Noakes, 2006; Van Biesen et al., 2016) as the difference 

between middle and long distance pacing strategies: in Cold and Cold+M conditions our 

athletes display pacing characteristic of 800 and 1500m runners, yet as temperature 

increases (Hot) and menthol possibly increases awareness of this (Hot+M) the 

participants’ pacing profile reverts to a long distance style i.e. an even early pace, with a 

large end spurt (Tucker, Lambert and Noakes, 2006). This behaviour suggests that pacing 

strategy is a product of multi-sensory inputs, as per an interoceptive model of fatigue 

(Stevens and Best, 2017; McMorris, Barwood and Corbett, 2018), and may either possess 

a default template that one reverts to under challenging circumstances, or if these inputs 

are ignored be at risk of premature exhaustion as shown above (Figures 7.2 and 7.3). 

Pacing strategies vary dependent upon event duration (Abbiss and Laursen, 2008) and may 

also be indicative of athlete ability (Sandals et al., 2006; Abbiss and Laursen, 2008; 

Hettinga et al., 2010). Indeed, pacing is a learned behaviour which improves with repeat 

exposure to the same task (Foster et al., 2009). This effect has been reported to be most 

notable in the early stages of exercise (Foster et al., 2009), independent of exercise 

modality.  

The variety of pacing strategies during the time trials suggest an inhibition of a central 

governor (Tucker et al., 2006) or regulatory feed-forward mechanism (Jay and Kenny, 

2009), possibly due to lack of feedback provided to the athlete during the trial in 

comparison to more ecologically valid settings. The athlete must instead interpret the 

signals sent from multiple inputs (dRPE, HR, [La], V̇E and perceived running speed) in 

lieu of sensory feedback such as visual cues, audible ‘splits’, or the presence of 

competition (Corbett et al., 2017), limiting knowledge or prediction of exercise end-point. 

The influence of heat on such a regulatory model (Jay and Kenny, 2009), and performance, 
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is affected by training status (Mora-Rodriguez, 2012; McLellan et al., 2012; Lisman et al., 

2014), degree of heat acclimation (Junge et al., 2016; Stevens et al., 2017) and exercise 

modality (Mora-Rodriguez, Ortega and Hamouti, 2011; Junge et al., 2016), and so is best 

assessed across multiple exposures to the same temperature(s) whilst controlling for 

factors such as wind-speed, humidity and clothing. 

The elevation in HR under mentholated conditions observed within this study is a novel 

finding. Contrary to previous literature (Mündel and D. A. Jones, 2009; Stevens, Bennett, 

et al., 2016; Stevens, Thoseby, et al., 2016; Flood, Waldron and Jeffries, 2017), elevated 

HR was observed in both Cold+M and Hot+M conditions. These differences are possibly 

harmful from baseline in both conditions, but diminish in Hot+M at higher speeds. 

Although not an explanation for the elevated HR at lower speeds, there is a concomitant 

elevation in V̇E and diminution in HR, Ttymp, [La], and dRPE values at 20km.h-1 and upon 

1km time trial completion in Hot+M. The addition of menthol may have driven the 

increase in V̇E, as per other works (Mündel and D. A. Jones, 2009; Stevens, Bennett, et 

al., 2016; Stevens, Thoseby, et al., 2016), and the athlete(s) adjusted their pace in line with 

this signal, explaining the reduction in other physiological variables. Specifically, the 

increased awareness (manifested as an elevated RPElung) brought about by an increased 

V̇E in combination with menthol induced sensitisation of the oral cavity, led to a slower 

starting velocity (Figure 7.2 and 7.3, Panels D and E) during the 1km time trial and this is 

responsible for a lag in other physiological values, in comparison to other conditions. 

In Cold+M it is plausible that this possibly harmful difference in HR from baseline and 

throughout the testing protocol may have inadvertently facilitated time trial performance, 

but hindered RE, as shown by an increase in V̇O2, elevated Ttymp and further confirmed 

subjectively by increased dRPE values. This notion is supported by the pacing profile 

adopted by most athletes in this condition, apart from one athlete who ran aggressively 

early in the trial, before fading. Whilst not a positive performance outcome for that athlete, 

this suggests that in this instance menthol mouth-swilling may possess qualitative factors 

or influences not examined in the present study. 

The elevated HR can be likened to the anticipatory rise (Aubert, Seps and Beckers, 2003), 

which is then further compounded by the novel stimulus of a menthol mouth-swill. 

Menthol has the potential, through stimulation of TRPA1 receptors, to activate the 

sympathetic nervous system. When coupled with a psycho-physiological anticipatory 

effect due to the application a novel stimulus and resultant increase in VE, an elevated HR 

is much more readily explained. Indeed, the application of menthol has been repeatedly 

described as capable of inducing arousal (Eccles, 2000a; Eccles et al., 2013), the 
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magnitude of which is likely to correlate with the thickness of the outermost layer of the 

skin i.e.  the stratum corneum (H. R. Watson et al., 1978; Patel, Ishiuji and Yosipovitch, 

2007; Stevens and Best, 2017). The increase in HR cannot be ignored and warrants further 

investigation with repeat exposures in Cold+M conditions, to assess whether HR 

habituation occurs across subsequent exposures, although thermally-mediated perceptual 

and physiological characteristics may also affect this response. 

Within Cold temperatures, menthol mouth swilling evoked increases in TC of 0.4 ± 0.9, 

1.2 ± 1.2, and 0.7 ± 1.2 arbitrary units at 16km.h-1, 18km.h-1 and upon 1km time trial 

completion respectively. In national and elite distance runners, the lower speeds have been 

shown to be satisfactorily reliable in RE and other physiological values (Saunders, Pyne, 

Telford and Hawley, 2004b), increasing confidence that the change in thermal comfort is 

driven by the use of menthol. The improvement in TC in response to menthol mouth 

swilling may be considered pleasurable by some athletes; intra-oral temperature stimuli, 

such as menthol, have the ability to confer a hedonic effect (Eccles et al., 2013) by 

stimulating a network of taste and reward-responsive regions of the brain (Rolls, 2010). 

Indeed TC may be subjectively defined as ‘that condition of mind which expresses 

satisfaction with the thermal environment.’ (Epstein and Moran, 2006); operationally 

defined TC is the interpretation of thermal inputs (Schulze et al., 2015) that may drive 

behavioural thermoregulation (Frank et al., 1999). The latter of the two definitions 

accounts for physiological factors that may influence TC and may be a product of fitness 

as reflected in the present study in Hot conditions. Differences in TC are less uniform 

when Hot conditions are compared. This may be attributed to varying degrees of heat 

acclimation within the group, or differing sensitivity to menthol. This sensitivity may be 

induced by the experiment (acute) and therefore would parallel an increase in Ttymp, or the 

result of inheritance of a TRP gene variant (chronic (Morgan et al., 2014; Morgan, 

Sadofsky and Morice, 2015)). 

Mechanistically, menthol elicits a cooling sensation through stimulation of TRM8 

receptors and the trigeminal nerve in the oral cavity (Eccles, 2000). The perceived 

magnitude of this response may be heightened if local temperature (Ttymp) is also elevated 

in response to exercise and swilling, as we have observed. Menthol has been shown to 

increase the perception of cold in other beverages for five minutes when swilled at a 0.02% 

concentration (Green, 1985), so any water drunk ad libitum during the trial(s) may also 

have been perceived as more refreshing, and thirst quenching (Eccles, 2000; Eccles et al., 

2013) despite the water volume(s) consumed most likely being insufficient to offset 

exercise induced changes in plasma osmolality (Eccles, 2000), partially explaining the 
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limited change in thirst values observed throughout the trial(s). Thirst values may also be 

blunted by an increase in salivary flow rate brought about by mouth-swilling (Dawes, 

1987; Eccles, 2000) which may have provided a hygro-sensory stimulus. This effect is 

diminished in the heat, due to evaporative and respiratory water losses likely exceeding 

the counter-sensory stimulus provided by menthol. This may have been further 

exacerbated by the low humidity (10%) coupled with Hot temperature (28°c) and the 

potential for the alcohol within the mouth swill to evaporate and potentially contribute to 

‘dry-mouth’ (Dawes, 1987), so thirst was or remained elevated relative to Hot conditions 

without menthol. Thirst needn’t be present to induce a feeling that is perceived as pleasant 

(Eccles, 2000), as evidenced by changes in TC and TS.  

Thermal Sensation clearly differed between temperatures, although this difference 

diminished as exercise intensity increased, most likely due to the greater amount of heat 

being produced because of the metabolic and mechanical work being completed to attain 

higher running speeds (Maughan, 1984; Junge et al., 2016). In Cold conditions, when 

exercising, menthol appeared to improve thermal sensation by lowering athletes’ 

perception up to 18km.h-1, beyond which responses became unclear. However, in Hot 

conditions, menthol showed little influence on TS at lower speeds and increased TS at 

higher speeds. The ability of menthol to enhance warmth has been noted previously by 

Green (Green, 1985), when the oral cavity was cooler than the menthol solution that was 

swilled. Menthol was stored in the same chamber as the participant in this investigation to 

be representative of an aid station in a race. This move toward ecological validity may 

have hindered the efficacy of the solution. 

The varied responses, as evidenced by large standard deviations across measures of 

thermal perception, suggest either an individual tolerance to menthol, or that trained 

athletes are less susceptible to the perceptual and thermal challenges of exercise than lesser 

trained populations (Cheung and McLellan, 1998; Mora-Rodriguez, 2012; McLellan et al., 

2012; Lisman et al., 2014). This is not to be confused with athletes not presenting as 

responders to menthol, but that contrary to previous research the response is bidirectional. 

Differences within variables were observed at a range of speeds with little uniformity 

between or within temperatures. Sixteen kilometres per hour (16km.h-1) has previously 

been suggested to be of importance as it has been historically used to assess the RE of a 

wide-range of athletes (J. Daniels and N. Daniels, 1992; Saunders, Pyne, Telford and 

Hawley, 2004b; A.M. Jones, 2006) against supporting reference values (Barnes and 

Kilding, 2015), and is a commonly encountered speed in training (A. M. Jones, 2006). Our 

data support recommendations that 16km.h-1 presents an interesting and potentially 
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important speed at which to assess RE and associated measures, but the variety of 

differences and unclear responses observed suggest the need for testing based upon 

individualised aerobic parameters e.g. V̇O2max, vV̇O2max and lactate threshold (LT) (Joyner 

and Coyle, 2008). These unclear responses are likely further compounded by the low 

sample size of the present investigation. 

Individualisation can be achieved by adopting either a ‘clamped’ or graded approach. In a 

clamped approach RPE or the dRPE input considered to be limiting is prescribed hence 

‘clamped’, and physiological and subjective responses beyond this measure are assessed 

throughout the exercise bout. This model has been used in environmental physiology 

research previously, with (Flood, Waldron and Jeffries, 2017) and without (Tucker et al., 

2006) menthol mouth swilling. A graded approach may more closely resemble this 

investigation methodologically. However, exercise intensities are prescribed based upon 

individual work rates such as percentage V̇O2max or vV̇O2max, or haematological thresholds 

such as 2mmol.L-1 and 4mmol.L-1 [La] (Hall et al., 2016), although these have been shown 

to be unreliable (Aunola and Rusko, 1984; Hall et al., 2016) relative to V̇O2max and 

associated percentages (Mann, Lamberts and Lambert, 2013). There is some confusion as 

to nomenclature when discussing physiological thresholds generally (Keir et al., 2015; 

Hall et al., 2016), so if training is to be individualised and fitness tracked longitudinally, 

it must be done so holistically and described using multiple metrics, at pertinent intensities, 

as per case studies of elite distance runners (A. M. Jones, 1998; 2006; Lucia et al., 2008). 

Alternatively, if laboratory based testing is not available to the athlete or coach, testing 

may involve assessing performance and dRPE responses during a standardised training 

session. 

Variability within participant physiology, and manifestation thereof is further evidenced 

by the range within participant 5km personal best (range: 2 min 8 sec), despite our 

participants being considered well-trained or elite by academic standards (De Pauw and 

Roelands, 2013; Barnes and Kilding, 2015) and faster than those previously studied by 

Stevens (Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016). Whilst literature 

may categorise these athletes based upon physiological values, these values manifest 

themselves as stark differences in real world running performance, further emphasising 

the need for individualisation. This is perhaps best expressed by an equation for distance 

running performance (as per a physiological model): 

 

𝑉𝑂2𝑚𝑎𝑥
̇  𝑥 𝑙𝑎𝑐𝑡𝑎𝑡𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑥 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 𝑒𝑐𝑜𝑛𝑜𝑚𝑦  

(Joyner, 1991; Joyner and Coyle, 2008) 
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Given the contrasting environmental conditions investigated, and the susceptibility for 

temperature to affect distance running performance (Maughan, 1984; Maughan, Watson 

and Shirreffs, 2007; Maughan, 2010), the ventilatory and lactate responses observed 

within this study may be in part explained by the effects of temperature and heat storage 

upon the physiological variables described above. 

Temperature is often cited as a determining factor in exercise performance in the heat, 

with a critical value of a core temperature (Tcore) of 40ºC typically posited (Ely et al., 

2009). Multiple case reports (Maughan, 1984) and laboratory investigations (González 

Alonso et al., 1999; Ely et al., 2009; Cuddy, Hailes and Ruby, 2014; Corbett et al., 2017) 

counter this assertion, suggesting instead that the rate of heat accumulation sustained by 

an individual, and their perception thereof, may drive reductions in exercise performance. 

Elevation of core temperature is considered a function of work, but is susceptible to 

influence from exercise nature (Mora-Rodriguez, Del Coso and Estevez, 2008) and 

modality (Mora-Rodriguez, Ortega and Hamouti, 2011). Specifically, intermittent exercise 

leads to a greater rate of heat accumulation than continuous exercise, when matched for 

exercise duration. Intermittent exercise also elevates V̇O2 to a greater extent than 

continuous exercise, concomitantly impairing sweat rate hereby impairing heat 

dissipation. Ecologically this is evidenced by the preference for even or negative pacing 

strategies by athletes, which likely confer energetic and thermoregulatory advantages. ( 

Kraning and Gonzalez, 1991; Morris et al., 1998; 2000) 

Heat accumulation, heat storage and the temperature gradient between an athlete’s core 

and periphery (a driver of sweat rates) can all be mitigated by the ingestion of cooling 

strategies such as ice slurries (M.L. Ross, Garvican and Jeacocke, 2011; Stevens et al., 

2013; Levels et al., 2013; Stevens, Thoseby, et al., 2016; Maunder, Laursen and Kilding, 

2016) and cold liquid (Riera et al., 2014; Tran Trong et al., 2015; Maunder, Laursen and 

Kilding, 2016; Jay and Morris, 2018). Yet menthol has been documented to improve 

running performance in this study and others (Tran Trong et al., 2015; Stevens, Bennett, 

et al., 2016; Stevens, Thoseby, et al., 2016), independent of these changes, suggesting that 

cooling of the oral cavity, and therefore stimulation of the trigeminal nerve and TRPM8 

receptors, by subjective or physiological means, may confer a benefit to performance.  

The considerations raised above indicate that individualised approaches to athlete 

assessment in thermally challenging conditions warrant further investigation. Clamping of 

dRPE presents an easy and practical method of individualising athlete assessment, 

suggesting a continuous exercise modality is preferred. A comparison between established 
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physiological cooling strategies and menthol would further advance understanding as to 

the potential importance of the oral cavity in ergogenic cooling strategies adopted by 

athletes.   
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CHAPTER 8 : SWILLING OF PHYSIOLOGICAL AND 

PERCEPTUAL COOLING AGENTS DURING A 

SIMULATED RUNNING TRAINING SESSION IN THE 

HEAT 

 

Menthol has previously been administered during time to exhaustion protocols, short time 

trials or to extend time to exhaustion following a period of fixed work. Such protocols are 

generally considered representative of competition, but may not be indicative of preparing 

for competition, thus assessing menthol’s physiological and perceptual effects during a 

simulated training session may be of benefit to athletes e.g. undergoing acclimation or 

warm weather training preparations. Four male athletes completed a graded exercise test, 

to establish the velocity corresponding to 2mmol [La] and the accompanying RPElegs 

value, which served as a dRPE ‘clamp’ that athletes had to sustain throughout three, 30min 

simulated training sessions. Trial order was assigned randomly, with athletes asked to swill 

either ice, menthol, or no swill (control) at 5 min intervals throughout the simulated 

session, conducted in hot conditions (35ºC, 10% humidity). Athletes were free to change 

running speed, but RPElegs was to remain clamped for the session duration. Measures of 

V̇O2, V̇E, HR, [La], Ttymp TC, TS, Th, were also assessed at 5 min intervals throughout the 

session. Large to very large reductions in V̇O2 occurred in the latter half of the session 

following menthol mouth swilling, independent of changes in V̇E, Ttymp and dRPE values. 

Perceptually, ice swilling induced greater changes in TC and thirst than menthol compared 

to not swilling; menthol exposure also induced more moderate alterations in these 

variables at similar time points. Other single time point differences or trends did occur but 

were predominantly considered unclear. Athletes’ running speed remained consistent 

throughout all trials suggesting appropriate clamping of RPElegs and minimal variation. To 

conclude, menthol mouth swilling may present a feasible and practical alternative to ice 

slurry swilling during exercise of 30min, in hot environmental conditions in trained 

runners, although a larger sample size is required to confirm these results. 

 

8.1 Introduction 

Athletes employ a range of cooling methodologies, at varying time points throughout an 

exercise bout to combat perceived and physiological thermal strain imparted by exercising 

in hot conditions (Bongers et al., 2014; Hopman, Bongers and Eijsvogels, 2017; Best, 

Payton, et al., 2018). This strain may be compensable or non-compensable (Givoni and 
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Goldman, 1972; Cheung, McLellan and Tenaglia, 2000). Compensable heat strain refers 

to the body being able to maintain a steady thermal state, whereas, non-compensable heat 

strain suggests that one or more of conductive, convective, evaporative and radiative 

cooling mechanisms may be impaired (Givoni and Goldman, 1972; Maughan, 1984; 

Cheung, McLellan and Tenaglia, 2000). Both types of strain may lead to compromised 

exercise performance (Maughan, 1984; González Alonso et al., 1999; Cheung, McLellan 

and Tenaglia, 2000), and may also detract from associated tasks such as decision making 

(Schmit, Duffield and Hausswirth, 2015; Schmit et al., 2017) and wider cognitive function 

(Corbett et al., 2017; Watkins et al., 2018), that may have a bearing on competitive 

outcome. The nature of the heat stress to be experienced by an athlete should inform the 

cooling strategy administered during the exercise bout, with athlete preference and 

tolerance of such strategies also pertinent factors.  

The term used throughout this thesis to describe one’s combined perceptual and 

physiological state is that of interoception, where one posits ‘How do I feel now?’ (Craig, 

2002); this question is pivotal in exercise, as it challenges an athlete to interpret 

exteroceptive somatosensory signals, interoceptive drives and emotional/motivational 

qualities (A.D. Craig, 2003), which ultimately manifest in an athlete’s performance. 

Interestingly, an athlete’s perception of their physiological condition can be deceived 

(Castle et al., 2012; H. S. Jones et al., 2013; D. N. Borg et al., 2018). It is established that 

with the appropriate administration of perceptual (Stevens and Best, 2017; Best, Payton, 

et al., 2018; Jeffries and Waldron, 2018) and / or physiological (Quod, Martin and Laursen, 

2006; M.L. Ross et al., 2013; Bongers et al., 2014; Stevens, Taylor and Dascombe, 2016; 

Hopman, Bongers and Eijsvogels, 2017; Best, Payton, et al., 2018) cooling interventions 

an athlete’s performance can be augmented, yet the possible influence of deception in 

environmentally challenging conditions (Castle et al., 2012; H.S. Jones et al., 2013; D. N. 

Borg et al., 2018) suggests that tending to an athlete’s interoception may elicit greater 

ergogenic effects, with respect to heat tolerance, than simply addressing physiological 

limitations in isolation. Indeed, whilst an athlete’s interoceptive state may dictate or limit 

their performance outcome, the system(s) is perhaps fallible.  

Given menthol’s ability to alter thirst as outlined by Eccles (Eccles, 2000) and evidenced 

in chapter six, this suggests menthol can impart effects that tend to an athlete’s 

interoception when exercising in a hot environment, evoking a sensation of “I feel cooler”. 

In contrast, a physiological cooling agent such as ice, typically induces a lower Tcore and 

so would elicit a response of “I am cooler” by an athlete. Such a distinction may be 

important for athletes preparing to compete in the heat to be able to make, given the 
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potential risk of heat injury and associated illness, if training for prolonged times in 

thermally challenging conditions. 

Much of the research regarding cooling interventions, irrespective of cooling modality, 

has tended to employ an exhaustive protocol, whether that be time to exhaustion at a fixed 

intensity (Mitchell, McFarlin and Dugas, 2003; Mündel et al., 2006; Mündel and D. A. 

Jones, 2009) or rating of perceived exertion (Schlader, Stannard and Mündel, 2011; Flood, 

Waldron and Jeffries, 2017; Bright et al., 2019), or a time trial of a predetermined duration 

(Quod et al., 2008; Duffield et al., 2010; Byrne et al., 2011; Gonzales et al., 2014), or 

distance (Stanley, Leveritt and Peake, 2010; M.L. Ross, Garvican and Jeacocke, 2011; 

Muñoz et al., 2012; Riera et al., 2014; Stevens, Thoseby, et al., 2016). Very few authors 

have investigated designs that replicate typical training sessions undertaken by endurance 

athletes in the heat (Kenny et al., 2009; Tran Trong et al., 2015), and those that have 

(Maxwell, Aitchison and Nimmo, 1996; Kenny et al., 2009; Tran Trong et al., 2015) 

employed submaximal workloads that may not mirror the training demands of athletes 

preparing to compete in the heat, or undertaking warm weather training trips, implying 

either that the investigations lack ecological validity or that the athletes involved in most 

investigations are not in fact trained when considered against more robust criteria (De 

Pauw and Roelands, 2013). It is also acknowledged that there may be ethical and 

experimental considerations that have also influenced environmental physiology 

investigations to date (Cheung, McLellan and Tenaglia, 2000).  

Identification of the preferred and / or most effective cooling strategy in an ecologically 

valid setting (session duration, environment and intensity) in trained athletes would be of 

benefit to athletes undergoing acclimation or warm weather training preparations. 

Practically, whether this strategy is perceptual (menthol) or physiological (ice) in nature, 

may have important logistical ramifications for an athlete and associated support staff due 

to the resources required to ensure a strategy is appropriately administered, at an 

appropriate temperature. Hence, the aim of this investigation is to assess the effects of 

menthol mouth swilling in comparison to ice mouth swilling, during a 30-minute training 

session in trained distance runners. 

 

8.2 Materials and Methods 

This study employed a post-only crossover design, in which participants served as their 

own controls. Experimental effects were derived from between condition comparisons and 

individual responses to each condition over time. Ethical approval for this investigation 
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was granted by the Teesside University School of Social Sciences, Business and Law 

ethics board. 

Prior to study commencement, participants completed a graded exercise test to assess 

V̇O2max, the velocity at which ≥2mmol blood lactate ([La]) occurred and corresponding 

dRPE values, as per the CR100 scale (E. Borg and G. Borg, 2002). These data were used 

to individualise exercise intensity during simulated training sessions, as we adopted a 

‘clamped’ RPE model (Tucker et al., 2006; Flood, Waldron and Jeffries, 2017), 

corresponding to the RPElegs obtained when ≥2mmol [La] was obtained, as this value 

represents a minor but sustainable increase in [La] above baseline levels and corresponds 

to the aerobic threshold (Mann, Lamberts and Lambert, 2013).This session also served to 

familiarise participants with the experimental warm-up procedure and testing 

environment.  

Nutritional intake was recorded via a 24-hour food recall preceding the first experimental 

session, with participants encouraged to consume a typical diet throughout the testing 

period. The 24-hour recall served as a template that participants aimed to replicate 

throughout the testing period, with a view to increasing experimental and ecological 

validity. Experimental sessions (one visit per condition: Control, Ice, Menthol) comprised 

three laboratory visits, with trial order assigned via a Latin square design, as per a 

customised spreadsheet (Pezzullo, 1999). All experimental sessions took place in an 

environmental chamber, with participants wearing a harness in case of involuntary 

collapse when exercising. Temperature was set at 35°c for all trials; humidity was fixed at 

10% and wind speed at 0 m.s-1 to mitigate cooling effects driven by environmental factors 

beyond temperature and to maximise individuals’ rates of heat storage. Water was 

available ad-libitum at room temperature during exercise. 

 

8.2.1 Participants 

Four male athletes undertook this investigation; participant information is presented below 

(Table 8.1). Testing sessions were incorporated into the participants’ training schedule by 

their coach and would replace a weekly ‘tempo’ session. Training volume was requested 

to be maintained throughout the testing battery, so results would be indicative of each 

athlete’s typical abilities, and not the product of an increase or reduction in training 

volume. Athletes wore their preferred training clothing e.g. shorts and singlet and racing 

flats to increase ecological validity and athlete comfort.  
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Table 8-1 Participant anthropometric, physiological and performance characteristics 

Participant # Age  

(years) 

Height  

(cm) 

Weight  

(kg) 

V̇O2max  

(ml.kg-1.min-1) 

5km PB 

(mm:ss) 

5km Speed  

(km.h-1) 

1 18.9 177.0 64.0 65.5 16:28 18.22 

2 17.1 170.0 58.0 65.5 15:46 19.03 

3 18.1 175.0 66.4 67.6 15:43 19.09 

4 20.8 175.0 56.0 67.8 15:37 19.21 

Mean ± SD 18.7 

± 1.38 

174.3 

± 2.59 

61.1 

± 4.25 

66.61 

± 1.29 

15:53 

± 00:20 

18.89 

± 0.39 

 

8.2.2 Simulated training session 

The simulated training session was broken down into five-minute intervals for analysis 

purpose, but comprised 30 min continuous running in total. Outcome measures were 

recorded at the intervals depicted in the diagram below (Figure 8.1). Each training session 

was preceded by a 10 min warm-up at 10km.h-1 on the same make and model treadmill 

(h/p/cosmos Pulsar; h/p/cosmos Sports & Medical GMBH; Nussdorf-Traunstein, 

Germany) that the training session was completed upon. Athletes cooled down on the same 

treadmill, for the same duration at a self-selected intensity. Physiological cooling was 

provided by swilling an ice-slurry mixture for 10-seconds prior to expectoration. Ice slurry 

was made from 150g ice and 200ml water, blended in a vortex mixer (Thermomix ®; 

Vorwerk & Co. KG, Wuppertal, Germany). Menthol was diluted as previously described 

(Best, Spears, et al., 2018), and provided at a 0.1% concentration to be swilled for 10-

seconds. Swilling took place whilst running to simulate a continuous training session, or 

aid stations.  

 

8.2.3 Outcome Measures 

8.2.3.1 Physiological Measures 

V̇O2 (ml.min-1 and ml.kg-1.min-1) and VE (L.min-1) were assessed using breath by breath 

analysis (Piston HD6000, nSpire, nSpire Health Inc, Hertford, UK), for the final two 

minutes of each five-minute interval. Breath by breath V̇O2 was averaged over for each 

stage. From this data was filtered using conditional formatting to obtain 30 seconds of data 

that was ± 50ml from the mean. This method was chosen as steady state oxygen 

consumption has previously been defined as an increase of <100ml O2 over the final two 

minutes of the stage (Fletcher, Esau and MacIntosh, 2009). Samples to be analysed for 

[La] were obtained from the non-dominant ring-finger using a lancet and collected in a 

capillary tube for automated analysis by a YSI 2700 Select analyser (YSI (UK) Ltd., 

Hampshire, United Kingdom) via a 25 μL sample. Heart rate values were recorded 30 
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seconds prior to stage completion using telemetry (Polar RS400; Polar, Helsinki, Finland). 

Temperature was recorded prior to the test session, and upon completion of five-minute 

segment. Temperature was assessed using a tympanic thermometer (±0.1°c; Braun 

Thermoscan 5; Braun, Braun GmbH, Kronberg, Germany) and disposable caps, with 

measures taken from the left ear. Temperature was assessed following administration of 

menthol and ice, so any potential increase in temperature caused by swilling or local 

temperature reduction would be recorded.   

 

8.2.3.2 Subjective Measures 

Subjective measures were assessed using validated rating scales, with accompanying 

descriptors. Thirst was assessed via Engell’s scale (Appendix 3; (Engell et al., 1987), 

ranging from ‘Not at all thirsty’ to ‘Extremely thirsty’. Zhang et al.’s scales of TC and TS 

were used to assess these qualities (Appendix 2 (Zhang et al., 2004). Both scales range 

from -4 to +4, with polar descriptors of Very Uncomfortable: Very Comfortable, and Very 

Cold: Very Hot, respectively. As a point of difference, the TC scale contains values of -0 

and +0 to numerically describe just uncomfortable and just comfortable, respectively 

(Zhang et al., 2004). Borg’s CR100 scale (E. Borg and G. Borg, 2002) with idiomatic 

English verbal descriptors (Appendix 1) was used to assess dRPE. This differential 

approach clamped RPE at the legs (RPElegs), and assessed RPE for the lungs (RPElungs) and 

overall (RPEover). 
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Figure 8-1 Testing Protocol for each trial. Downward arrows indicate the application of randomised swill 

(Blue and Green glasses represent ice and menthol respectively. The clear glass represents the control 

condition), and assessment of outcome measures ([La], HR and dRPE values, as per symbols left to right)). 

 

8.2.4 Statistical analyses 

Data were analysed using standardised mean differences, via a customised spreadsheet 

(Hopkins, 2006). Magnitudes of effects were based upon standardised thresholds for Small 

(0.2), Moderate (0.6), Large (1.2) and Very Large (2.0) changes of standardised mean 

differences (Hopkins et al., 2009), irrespective of outcome measure. Raw data are 

presented as mean ± SD. Standardised mean differences are presented as effect sizes (ES) 

± 90% confidence intervals (C.I.). Per condition each athletes’ %V̇O2max elicited by their 

self-selected running speed (km.h-1) was plotted over the session duration at five-minute 

intervals and presented with an accompanying R2 value (0-1). This allowed for a more 

meaningful expression of exercise intensity between conditions, accounting for internal 

and external load, despite a clamped RPElegs. Further, a customised spreadsheet for the 

analysis of individuals (Hopkins, 2017) was used to derive an individual slope per athlete, 

per condition for TC, TS and thirst. This approach allowed an understanding of the 

likelihood of each athlete experiencing a substantial change in TC, TS, and thirst at five-

minute intervals throughout the exercise bout, whilst accounting for minimal important 

differences and typical error within each variable (Hopkins, 2017). If a change was deemed 

to be likely substantial, it represented a 75% chance of change (Hopkins, 2017) in either a 
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positive or negative direction. Minimal important differences for TC, TS and thirst were 

considered to be 0.5 units. 

 

8.3 Results 

Running speed throughout each trial remained relatively stable on average, between time 

points and between conditions. This is supported by standard deviations greater than the 

change in mean(s), and confidence intervals that overlap zero, relative to the effect statistic 

(Tables 8.2 - 8.4). Relationships between %V̇O2max and running speed are presented in 

Figure 8.2, with accompanying R2 values also stated, where possible; in the incidence of 

no change in running speed throughout the exercise bout the relationship is solely 

represented pictorially. 

  

8.3.1 Physiological Measures 

Both menthol and ice slurry lowered V̇O2 throughout the exercise bout, with menthol 

demonstrating large – very large reductions of 4 – 4.3 ml.kg-1.min-1 in the latter half of the 

bout; ice slurry also lowered V̇O2, however the standardised mean difference only 

exceeded the standard deviation at trial completion (-3.1 ± 2.7 ml.kg-1.min-1; Large). 

Ventilation also responded to perceptual and physiological cooling but showed divergent 

responses to cooling stimuli with ice lowering V̇E throughout exercise duration, but failing 

to produce a meaningful effect, and menthol increasing V̇E by a small magnitude relative 

to ice slurry swilling, in the latter third of the training session. 

Beyond respiratory measures, athletes who swilled ice slurry presented with lower HR in 

comparison to menthol at baseline (-14.0 ± 13.6 bpm; Small) but these effects dissipated 

throughout the tempo run. Blood lactate [La] showed a similarly small reduction in the ice 

slurry condition compared to menthol at baseline, with lower mean [La] values persisting 

between conditions but showing increased variability (as expressed via a greater standard 

deviation, and widening confidence intervals) as exercise duration increased, suggesting 

the attenuation or dissipation of these baseline differences in most athletes. No notable 

differences in Ttymp were found between cooling or control conditions at any time point. 

 

8.3.2 Subjective Measures 

Rating of perceived exertion measures were not different between conditions, suggesting 

that clamping of RPElegs had a similar effect upon other differential RPE measures 

(RPEover; RPElungs). 
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Thermal Comfort responded most to ice slurry swilling when compared to the control 

session, demonstrating an improved thermal comfort from half-way through the exercise 

bout; these effects were small – large in nature, with a change of 0.8 – 1.5 raw units, 

representing one or more verbal descriptors. Menthol also showed a similar trend toward 

improving TC, however the effect statistic (0.55; small) only exceeded the confidence 

interval (± 0.43) upon session completion in comparison to the control session, but reduced 

variability was apparent from half-way through the tempo run (narrowing of standard 

deviations), highlighting the effects of menthol mouth swilling became more uniform over 

time. Despite contrasting magnitudes of effect, when compared directly ice slurry and 

menthol mouth swilling only differed notably at baseline (0.48 ± 0.47; small). With respect 

to TS, both menthol and ice slurry swilling lowered TS relative to control throughout the 

exercise bout, but these effects were considered trivial due to the range of responses 

observed. Similarly, when menthol and ice slurry ingestion were contrasted, ice slurry 

tended to lower TS, but considerable variability was observed. Large – Very Large 

reductions in thirst were observed at 5 and 10 min intervals following ice slurry 

application, however the uniformity and direction of these results altered over the course 

of the exercise bout. Menthol also lowered thirst by a moderate degree at 5 min in 

comparison to control (0.8 ± 0.6 AU) and tended to report higher values than ice slurry 

swilling when the two strategies are contrasted (Table 8.4). Individual trend lines for each 

variable are presented in Figures 8.3 - 8.5; changes that are substantially different (positive 

or negative) to the previous observation are marked with a §. 
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Figure 8-2 Oxygen uptake (V̇O2) as a percentage of V̇O2max per each five-minute interval, over the 30-minute 

training session. Each horizontal series represents a different athlete, with each colour/ column representing 

a different condition (Left to right: Control, Menthol, Ice). Linear trend lines and R2 values are shown to 

highlight individual variability, within and between conditions and as such the effect of each condition upon 

V̇O2 over time. 
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Figure 8-3 Individual trends in thermal comfort (AU) between conditions. Each horizontal series represents 

a different athlete, with each colour/ column representing a different condition (Left to right: Control, 

Menthol, Ice). The solid lines represent the trend for all data points, per athlete, per condition. Values that 

fall outside of the dashed lines represent a change that is deemed to be >75% likely substantial and are 

denoted by the following symbol §  
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Figure 8-4 Individual trends in thermal sensation (AU) between conditions. Each horizontal series represents 

a different athlete, with each colour/ column representing a different condition (Left to right: Control, 

Menthol, Ice). The solid lines represent the trend for all data points, per athlete, per condition. Values that 

fall outside of the dashed lines represent a change that is deemed to be >75% likely substantial and are 

denoted by the following symbol § 
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Figure.8-5 Individual trends in thirst (AU) between conditions. Each horizontal series represents a different 

athlete, with each colour/ column representing a different condition (Left to right: Control, Menthol, Ice). 

The solid lines represent the trend for all data points, per athlete, per condition. Values that fall outside of 

the dashed lines represent a change that is deemed to be >75% likely substantial and are denoted by the 

following symbol §
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Table 8-2 Effects of menthol mouth swilling on physiological and perceptual variables at each time point throughout the testing bout. Variables with confidence limits 

that do not cross zero are in bold. Magnitude of the effect is denoted by the following symbols *: Small; # Moderate; †: Large; ‡: Very Large. 

Variable Comparison Pre 5 min 10 min 15 min 20 min 25 min 30 min 

V̇O2 Raw difference - -2.2 ± 2.8 -2.7 ± 3.3 -4.1 ± 3.3 -4.0 ± 1.8 -4.0 ± 2.4 -4.3 ± 3.6 

(ml.kg-1.min-1) ES ± 90% C.I. - -0.37 ± 0.48 -0.86 ± 1.04 -1.52 ± 1.21† -1.31 ± 0.61† -1.73 ± 1.04† -2.37 ± 1.98‡ 

V̇E Raw difference - 1.4 ± 5.0 -1.5 ± 5.0 -1.8 ± 8.0 1.0 ± 2.2 1.2 ± 4.3 -1.4 ± 8.3 

(L.min-1) ES ± 90% C.I. - 0.35 ± 1.23 -0.1 ± 0.34 -0.08 ± 0.36 0.06 ± 0.13 0.05 ± 0.19 -0.06 ± 0.34 

HR Raw difference 1.7 ± 25.6 -2.0 ± 6.7 1.0 ± 3.5 4.8 ± 4.7 3.5 ± 4.8 1.3 ± 6 5.5 ± 4.0 

(bpm) ES ± 90% C.I. 0.09 ± 1.32 -0.17 ± 0.57 0.08 ± 0.27 0.42 ± 0.42* 0.28 ± 0.37 0.1 ± 0.49 0.51 ± 0.37# 

[La] Raw difference 1.1 ± 1.2 0.4 ± 1.5 0.9 ± 1.3 0.9 ± 1.9 1.6 ± 2.0 1.5 ± 1.5 1.1 ± 1.7 

(mmol.L-1) ES ± 90% C.I. 0.87 ± 0.96 0.24 ± 0.99 0.72 ± 0.98 0.54 ± 1.15 0.82 ± 1.04 5.07 ± 5.2 1.60 ± 2.41 

Ttym Raw difference 0.0 ± 0.3 0.1 ± 0.2 0.0 ± 0.1 0.0 ± 0.5 0.0 ± 0.4 0.0 ± 0.4 0.2 ± 0.5 

(°c) ES ± 90% C.I. 0.07 ± 0.83 0.26 ± 0.50 0.07 ± 0.43 0.0 ± 1.51 0.73 ± 5.32 0.0 ± 0.87 0.43 ± 1.12 

RPEover Raw difference - -0.5 ± 12.8 -0.3 ± 11.8 -0.8 ± 9.8 -1.3 ± 7.3 -0.3 ± 8.3 -0.3 ± 2.2 

AU ES ± 90% C.I.  -  -0.04 ± 0.93 -0.03 ± 1.37 -0.11 ± 1.48 -0.19 ± 1.12 -0.03 ± 0.97 -0.04 ± 0.38 

RPElungs Raw difference - -2.5 ± 12.2 -2.0 ± 11.5 -2.0 ± 10.0 1.3 ± 9.5 -1.8 ± 7.3 0.8 ± 3.5 

AU ES ± 90% C.I.  -  -0.24 ± 1.19 -0.40 ± 1.23 -0.28 ± 1.39 0.16 ± 1.20 -0.44 ± 1.85 0.19 ± 0.89 

Thirst Raw difference -0.3 ± 0.6 -0.8 ± 0.6 -1.0 ± 1.7 -0.3 ± 1.8 0.0 ± 1.9 -1.3 ± 1.5 -1.0 ± 1.17 

AU ES ± 90% C.I. -0.31 ± 0.74 -1.09 ± 0.86# -1.00 ± 1.22 -0.19 ± 1.34 0.00 ± 1.08 -0.95 ± 1.12 -0.89 ± 1.48 

TC Raw difference -0.3 ± 1.5 0.3 ± 1.2 0.0 ± 1.4 -0.1 ± 1.7 0.6 ± 1.3 0.6 ± 0.9 0.8 ± 0.6 

AU ES ± 90% C.I. -0.12 ± 0.72 0.12 ± 0.60 0.00 ± 0.79 -0.07 ± 0.98 0.56 ± 1.16 0.79 ± 1.11 0.55 ± 0.43* 

TS Raw difference 0.0 ± 1.0 0.0 ± 1.0 0.3 ± 1.1 -0.5 ± 0.7 -0.3 ± 0.6 -0.5 ± 0.7 -0.3 ± 0.6 

AU ES ± 90% C.I. 0.00 ± 1.40 0.00 ± 1.21 0.31 ± 1.42 -0.73 ± 0.99 -0.31 ± 0.74 -1.22 ± 1.24 -0.71 ± 1.19 

Speed Raw difference - 0.0 ± 0.0 -0.2 ± 0.4 -0.2 ± 0.5 -0.2 ± 0.5 -0.2 ± 0.5 0.0 ± 0.4 

(km.h-1) ES ± 90% C.I.  -  0.00 ± 0.00 -0.19 ± 0.32 -0.19 ± 0.40 -0.17 ± 0.36 -0.15 ± 0.33 0.03 ± 0.30 



 160 

 

Table 8-3 Effects of ice swilling on physiological and perceptual variables at each time point throughout the testing bout. Variables with confidence limits that do not 

cross zero are in bold. Magnitude of the effect is denoted by the following symbols *: Small; # Moderate; †: Large; ‡: Very Large. 

Variable Comparison Pre 5 min 10 min 15 min 20 min 25 min 30 min 

V̇O2 Raw difference - -1.5 ± 6.9 -1.1 ± 5.4 -3.1 ± 3.9 -3.1 ± 4.4 -3.2 ± 4.1 -3.1 ± 2.7 

(ml.kg-1.min-1) ES ± 90% C.I. - -0.25 ± 1.18 -0.35 ± 1.72 -1.15 ± 1.43 -1.01 ± 1.45 -1.41 ± 1.77 -1.72 ± 1.48† 

V̇E Raw difference - 0.4 ± 8.0 -2.1 ± 9.7 -4.2 ± 10.3 -6.7 ± 4.7 -8.2 ±11.2 -7.5 ± 11.4 

(L.min-1) ES ± 90% C.I. - 0.10 ± 1.94 -0.14 ± 0.65 -0.19 ± 0.46 -4.00 ± 0.27‡ -0.37 ± 0.50 -0.30 ± 0.47 

HR Raw difference -7.7 ± 30.4 -0.8 ± 11.3 2.3 ± 5.5 3.8 ± 6.3 3.3 ± 8.2 1.0 ± 9.1 4.3 ± 8.0 

(bpm) ES ± 90% C.I. -0.4 ± 1.57 -0.06 ± 0.96 0.18 ± 0.43 0.33 ± 0.56 0.26 ± 0.64 0.08 ± 0.74 0.39 ± 0.74 

[La] Raw difference 0.2 ± 0.8 -0.1 ± 0.8 0.2 ± 0.6 0.0 ± 0.7 0.4 ± 0.3 0.7 ± 0.7 0.5 ± 0.4 

(mmol.L-1) ES ± 90% C.I. 0.17 ± 0.62 -0.05 ± 0.52 0.12 ± 0.49 -0.01 ± 0.41 0.21 ± 0.14* 2.33 ± 2.27‡ 0.77 ± 0.64# 

Ttym Raw difference 0.1 ± 0.5 0.4 ± 0.5 0.1 ± 0.6 0.0 ± 0.6 0.1 ± 0.3 0.0 ± 0.8 0.1 ± 0.5 

(°c) ES ± 90% C.I. 0.30 ± 1.43 0.77 ± 1.10 0.29 ± 1.83 0.07 ± 1.70 1.45 ± 4.84 0.00 ± 1.61 0.19 ± 1.17 

RPEover Raw difference - -0.5 ± 5.8 1.3 ± 7.4 0.0 ± 4.8 -0.5 ± 1.2 -5.3 ± 8.1 -2.5 ± 3.5 

AU ES ± 90% C.I. - -0.04 ± 0.42 0.14 ± 0.86 0.00± 0.73 -0.08 ± 0.18 -0.61 ± 0.94 -0.43 ± 0.61 

RPElungs Raw difference - -2.5 ± 7.6 -3.0 ± 12.1 -2.5 ± 7.2 -1.8 ± 7.3 -1.3 ± 2.9 -0.5 ± 7.2 

AU ES ± 90% C.I. - -0.24 ± 0.74 -0.32 ± 1.30 -0.35 ± 1.00 -0.22 ± 0.92 -0.31 ± 0.74 -0.13 ± 1.82 

Thirst Raw difference -0.5 ± 0.7 -1.5 ± 0.7 -1.5 ± 1.5 -1.5 ± 3.1 1.3 ± 3.2 -2.0 ± 2.1 -1.8 ± 2.6 

AU ES ± 90% C.I. -0.63 ± 0.86 -2.18 ± 0.99‡ -1.64 ± 1.43† -1.14 ± 2.36 -0.70 ± 1.83 -1.52 ± 1.63 -1.56 ± 2.32 

TC Raw difference 0.8 ± 1.1 0.5 ± 1.3 0.5 ± 0.8 0.8 ± 0.8 1.5 ± 0.7 1.5 ± 1.5 0.8 ± 0.6 

AU ES ± 90% C.I. 0.36 ± 0.55 0.24 ± 0.62 0.27 ± 0.46 0.44 ± 0.44* 1.34 ± 0.61† 1.89 ± 1.91 0.55 ± 0.43* 

TS Raw difference 0.0 ± 0.0 -0.3 ± 0.6 0.0 ± 0.0 -0.3 ± 0.6 -0.3 ± 0.6 -0.5 ± 0.7 -0.5 ± 0.7 

AU ES ± 90% C.I. 0.00 ± 0.00 -0.31 ± 0.74 0.00 ± 0.00 -0.36 ± 0.86 -0.31 ± 0.74 -1.22 ± 1.24 -1.22 ± 1.24 

Speed Raw difference - 0.0 ± 0.0 0.0 ± 0.5 0.0 ± 0.5 0.0 ± 0.6 0.1 ± 0.7 0.4 ± 0.5 

(km.h-1) ES ± 90% C.I. - 0.00 ± 0.00 -0.04 ± 0.41 -0.02 ± 0.38 0.02 ± 0.42 0.05 ± 0.46 0.24 ± 0.31 
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Table 8-4 Comparison between ice swilling and menthol mouth swilling on physiological and perceptual variables at each time point throughout the testing bout. Variables 

with confidence limits that do not cross zero are in bold. Magnitude of the effect is denoted by the following symbols *: Small; # Moderate; †: Large; ‡: Very Large. 

Variable Comparison Pre 5 min 10 min 15 min 20 min 25 min 30 min 

V̇O2 Raw difference - 0.7 ± 6.2 1.6 ± 6.8 1.0 ± 6.4 0.9 ± 5.9 0.7 ± 6.4 1.2 ± 6.3 

(ml.kg-1.min-1) ES ± 90% C.I. - 0.12 ± 1.05 0.51 ± 2.16 0.37 ± 2.38 0.30 ± 1.95 0.32 ± 2.79 0.66 ± 3.43 

V̇E Raw difference - -1.0 ± 4.3 -0.6 ± 5.9 -2.3 ± 6.0 -5.4 ± 5.6 -9.4 ± 8.4 -6.1 ± 4.6 

(L.min-1) ES ± 90% C.I. - -0.25 ± 1.05 -0.04 ± 0.39 -0.11 ± 0.27 -0.32 ± 0.33 -0.42 ± 0.38* -0.25 ± 0.19* 

HR Raw difference -14.0 ± 13.6 1.3 ± 5.9 1.3 ± 4.8 -1.0 ± 1.7 -0.3 ± 6.1 -0.3 ± 3.5 -1.3 ± 5.6 

(bpm) ES ± 90% C.I. -0.72 ± 0.70# 0.11 ± 0.50 0.10 ± 0.38 -0.09 ± 0.15 -0.02 ± 0.48 -0.02 ± 0.29 -0.11 ± 0.51 

[La] Raw difference -0.8 ± 0.8 -0.4 ± 1.5 -0.8 ± 1.6 -0.9 ± 1.9 -1.2 ± 2.1 -0.8 ± 1.6 -0.6 ± 2.1 

(mmol.L-1) ES ± 90% C.I. -0.70 ± 0.62# -0.29 ± 0.97 -0.60 ± 1.22 -0.55 ± 1.16 -0.60 ± 1.08 2.75 ± 5.53 -0.83 ± 3.03 

Ttym Raw difference 0.1 ± 0.2 0.3 ± 0.5 0.1 ± 0.6 0.0 ± 0.5 0.0 ± 0.4 0.0 ± 0.6 -0.1 ± 0.3 

(°c) ES ± 90% C.I. 0.22 ± 0.66 0.51 ± 0.93 0.22 ± 1.61 0.07 ± 1.38 0.73 ± 6.01 0.00 ± 1.20 -0.25 ± 0.63 

RPEover Raw difference - 0.0 ± 11.8 1.5 ± 9.3 0.8 ± 7.6 0.8 ± 7.2 -5.0 ± 6.8 -2.3 ± 2.4 

AU ES ± 90% C.I. - 0.00 ± 0.86 0.17 ± 1.08 0.11 ± 1.16 0.11 ± 1.10 -0.58 ± 0.79 -0.39 ± 0.42 

RPElungs Raw difference - 0.0 ± 10.7 0.8 ± 9.3 -0.5 ± 7.2 -3.0 ± 8.2 0.5 ± 4.9 -1.3 ± 5.1 

AU ES ± 90% C.I. - 0.00 ± 1.04 -0.08 ± 1.00 -0.07 ± 1.00 -0.38 ± 1.03 0.13 ± 1.25 -0.31 ± 1.29 

Thirst Raw difference -0.3 ± 0.6 -0.8 ± 0.6 -0.5 ± 1.2 -1.3 ± 1.8 -1.3 ± 1.8 -0.8 ± 1.1 -0.8 ± 1.1 

AU ES ± 90% C.I. -0.31 ± 0.74 -1.09 ± 0.86# -0.37 ± 1.17 -0.95 ± 1.34 -0.70 ± 0.99 -0.57 ± 0.86 -0.67 ± 1.00 

TC Raw difference 1.0 ± 1.0 0.3 ± 0.38 0.5 ± 2.10 0.9 ± 1.50 0.9 ± 1.80 0.9 ± 2.2 0.0 ± 1.0 

AU ES ± 90% C.I. 0.48 ± 0.47 0.12 ± 0.37 0.27 ± 0.88 0.51 ± 0.90 0.78 ± 1.62 1.10 ± 2.73 0.00 ± 0.70 

TS Raw difference 0.0 ± 1.0 -0.3 ± 1.1 -0.3 ± 1.1 0.3 ± 0.6 0.0 ± 0.0 0.0 ± 1.0 -0.3 ± 0.6 

AU ES ± 90% C.I. 0.00 ± 1.40 -0.31 ± 1.42 -0.31 ± 1.42 0.36 ± 0.86 0.00 ± 0.00 0.00 ± 1.16 -0.46 ± 1.18 

Speed Raw difference - 0.0 ± 0.0 0.0 ± 0.5 0.0 ± 0.5 0.0 ± 0.6 0.1 ± 0.7 0.4 ± 0.5 

(km.h-1) ES ± 90% C.I. - 0.00 ± 0.00 -0.04 ± 0.41 -0.02 ± 0.38 0.02 ± 0.42 0.05 ± 0.46 0.24 ± 0.31 
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8.4 Discussion 

 

The aim of this investigation was to assess the effects of perceptual and physiological 

cooling, achieved via menthol and ice mouth swilling respectively, administered at five-

minute intervals, during a 30-minute training session in trained distance runners, in hot 

environmental conditions (35°C). The intensity of which was fixed at a rating of perceived 

exertion (RPElegs) that corresponded to the onset of ≥2mmol.L-1 [La], with running speed 

determined by the athlete throughout the exercise bout as long as RPElegs remained 

‘clamped’. The main finding being that menthol mouth swilling lowered oxygen 

consumption (V̇O2) by a large to very large degree in the latter two thirds of the trial, when 

compared to control conditions. Ice swilling induced a similarly large reduction in V̇O2 at 

the 30-minute time point compared to no swill; when contrasted, there were no meaningful 

differences between menthol and ice swilling at any time point (confidence limits 

overlapped zero), but V̇O2 was higher in the ice swilling condition at each time point. The 

decrease in V̇O2 observed due to menthol mouth swilling occurred in absence of any 

change in V̇E. Taken together these findings contrast with much of the previous literature 

which has assessed menthol mouth swilling (Mündel et al., 2006; Stevens, Bennett, et al., 

2016; Stevens, Thoseby, et al., 2016; Flood, Waldron and Jeffries, 2017; Jeffries, 2018), 

and contradict the model proposed by Eccles (Eccles, 2000) in which menthol application 

to the oral cavity induces increases in V̇E due to stimulation of oral cold receptors.  

There are several possible explanations for the differences between this work and 

previously conducted research. Firstly, the athletes in the present investigation are 

Performance Level 4 athletes as defined by De Pauw and Roelands (2013), in that they 

have a relative V̇O2max between 65-71ml.kg-1.min-1 suggesting that the athletes are highly 

trained, with previous menthol mouth swilling work being carried out on athletes with 

mean V̇O2max values ranging from 52-61ml.kg-1.min-1 (Performance levels 2 and 3; 

(Mündel et al., 2006; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016; Flood, 

Waldron and Jeffries, 2017; Jeffries, 2018)) and 5km personal bests ranging from 17-

23min (Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016). It is highly likely 

that empirically fitter athletes will exhibit different responses than their lesser trained 

counterparts. Indeed, reductions in V̇E during self-paced exercise performance in the heat 

(35°C) compared to normothermic conditions have also been reported in cyclists with high 

training volumes (Périard and Racinais, 2016) and in lesser trained individuals (V̇O2peak 

~60ml.kg-1.min-1)  with a high core temperature following heat exposure (Trangmar et al., 

2017), albeit without a cooling stimulus applied. It is not unreasonable to suggest that 
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when a well-trained athlete applies a cooling strategy to the oral cavity in a compensable 

heat at a familiar training intensity, the stimulation of oral cold receptors may be 

insufficient to counter the reduction in V̇E brought about by the heat, as this imposes a 

stronger thermal signal upon the trigeminal and other dependent systems (Eccles, 1994; 

2003; Eccles et al., 2013; Sloan et al., 1993). Although, the fact that menthol represents a 

more potent stimulus to this effect than ice is surprising but is supported in Chapter 7 

which also found trivial changes in V̇E at the running speeds (16-18km.h-1) in this trial 

following menthol mouth swilling in the heat, in similarly trained athletes. 

Secondly, the previously reported increases in V̇E and Eccles’ proposed model (Eccles, 

2000) were all conducted during, or based upon, situations that were exhaustive (Mündel 

and D. A. Jones, 2009; Flood, Waldron and Jeffries, 2017; Jeffries, Goldsmith and 

Waldron, 2018) or maximal (Riera et al., 2014; Stevens, Bennett, et al., 2016; Stevens, 

Thoseby, et al., 2016; Riera et al., 2016) in nature, unlike our investigation which was 

submaximal. It is important to note that Eccles’ model (2000; 2013) was not developed 

upon exercise observations, but instead upon maximal breath-holding following oral 

menthol use (Sloan et al., 1993), restricted breathing (Nishino, Tagaito and Sakurai, 1997) 

and forced cold air stimulation of the airway cold receptors (McBride and Whitelaw, 1981; 

Burgess and Whitelaw, 1988). As such, this model may present an incomplete explanation 

as to the effects menthol or other cold stimuli elicit when applied to the oral cavity during 

submaximal exercise, with factors such as mentholated product liking and habituation 

possibly playing a part, alongside more established factors such as thermal (dis)comfort, 

thermal sensation, and athlete fitness. However, this does not rule out the possibility for 

hedonic responses to be elicited by menthol application, or a perceived reduction in thirst, 

both of which are proposed by Eccles’ model (2000; 2013) and are supported elsewhere 

in the thesis (Chapters 6 and 7; (Best, Spears, et al., 2018), although not conclusively by 

this investigation (Figure 8.5; Tables 8.2-8.4).  

An ancillary finding concerns the interaction between V̇O2 and the application of cooling 

stimuli. The athletes were much better able to regulate their %V̇O2max over the training 

session when oral cooling strategies were applied, irrespective of their nature (Figure 9.2), 

and whilst maintaining the dRPE clamp. Application of menthol and ice showed a range 

of 0.5-3% and 1-5% respectively, hence the overlapping confidence intervals in Table 9.4; 

whereas, in the control condition this range was much larger at 3.5-9%, and was larger in 

all athletes, despite non-uniform changes and curves in %V̇O2max over the session. 

Variability within and between V̇O2 is expected even in elite distance runners, as Saunders 

et al. (2004b) report a mean coefficient of variation of 2.5% at 16km.h-1 and 2.4% at 
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18km.h-1 with the smallest worthwhile changes in V̇O2 considered to be similar (Shaw et 

al., 2013). Heat is known to increase the percentage of V̇O2max utilised as exercise duration 

progresses (Cheuvront et al., 2010) due to concomitant increases in Tskin and Tcore which 

redistribute blood flow and in turn increase cardiovascular strain. These mechanisms have 

been associated with an increase in RPE but are largely central in nature. In a clamped 

RPElegs model exercise intensity is somewhat independent of central input as it is 

peripheral load that is clamped and as such governing exercise intensity/output. Given the 

trained nature of the participants and the personalised and submaximal nature of the 

exercise, if a cooling strategy attenuates the perception and subsequent interpretation of 

factors that may drive fatigue centrally, exercise intensity is likely to be better maintained, 

more tightly regulated, or potentially improved. This notion is again supported by the 

reduction in V̇O2 and largely stable running speeds seen with the application of cooling 

interventions, despite elevations in HR and [La] (Tables 8.2 and 8.3), although the 

magnitude of these effects is variable.  

Further variability was seen within and between perceptual measures following swilling 

(Tables 8.2 and 8.3), specifically in the time course of the observed effects. Thirst tended 

to be reduced earlier in the exercise bout, in both conditions: menthol reduced thirst to a 

moderate extent five minutes into the exercise bout and again trended toward reduction 

towards the completion of the session; ice swilling followed a similar pattern of reduction 

but exerted greater effects (large to very large; Table 8.3) over a longer time (10 min). 

This is to be expected as thirst is a homeostatic drive for water ingestion and the provision 

of such would therefore be more appealing and successful in reducing thirst than a water 

mimetic such as menthol. Ice swilling also improved TC in the latter two thirds of the 

exercise session by a small to large degree equating 0.8-1.5 units, or approximating one 

verbal descriptor. Menthol was only effective in uniformly improving TC in the final 5 

min of exercise (0.8 ± 0.6 units; small) again approximating one verbal descriptor. Thermal 

sensation was also reduced in both conditions in the latter two thirds of exercise, although 

not beyond trivial levels (Tables 8.3 and 8.4), this can be predominantly attributed to one 

athlete who experienced substantial increases in TS at 10 and 15 min despite menthol and 

ice swilling, respectively (Figure 8.2 Panels B and C). The time course of physiological 

and perceptual cooling’s effects is an increasingly prevalent finding within the literature. 

Ingestion of ice slurries have been reported to improve perceptual and performance metrics 

and decrease Tcore, but may display an increased Tcore upon exercise termination (Siegel et 

al., 2010; 2011; Schulze et al., 2015), this has been termed a physiological overshoot. 

Similarly, Jeffries and colleagues (2018) showed that following a period of fixed work, 
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menthol mouth swilling or ice slurry ingestion elicited greater time to exhaustion than a 

placebo (Jeffries, Goldsmith and Waldron, 2018). This effect is not limited to the oral 

cavity as Barwood, Kupusarevic and Goodall (2018) report improved TS, TC and TTE 

employed repeated topical spraying of menthol, employing a similar design (Barwood, 

Kupusarevic and Goodall, 2018).  

Despite the above variability across perceptual thermal measures it is hypothesised that 

strategies that attenuate the perception of peripheral load in the heat, as expressed by 

RPElegs, may provide little relief in trained runners as they are likely accustomed to 

localised mechanical and metabolic stress associated with prolonged exercise of a 

relatively high intensity. Indeed, the high training volumes typically employed by elite 

distance runners may serve to ‘dampen the signal’ and supress a large percentage of 

interpretation of mechanical or metabolic stress in working musculature, even if this is 

potentially injurious. Furthermore, there is limited scope beyond pouring water 

(Armstrong et al., 2016; Morris and Jay, 2016) or applying a wet sponge (Pugh, Corbett 

and Johnson, 1967; Gisolfi and Copping, 1974) to affected areas in typical race scenarios. 

Benefits of such strategies are minimised due to the skin wettedness of athletes performing 

in the heat (Armstrong et al., 2016), especially in humid environments, and may accelerate 

the predisposition to dermatological injury (Eiland and Ridley, 1996; Mailler, 2004; 

Mailler-Savage and Adams, 2006), especially in longer duration events such as the 

marathon. 

A further critique of the perceptual thermal variables assessed within this study that is 

amplified by the small sample size is the sensitivity of the scales used to assess TC and 

TS. Thermal comfort is assessed with a minor improvement in sensitivity, relative to TS, 

as it employs a 10-point as opposed to 8-point scale. The present scales (Zhang et al., 

2004) were chosen due to their bidirectional nature, in that negative values are ascribed to 

decreases in perceived comfort and temperature and vice versa, increasing the ease of 

interpretation by research participants. The accompanying verbal anchors are useful too, 

especially when assessing TC (+0: Just comfortable; -0: Just uncomfortable), but 

participants tend to gravitate toward whole numerical anchors (Greenstein and Velazquez, 

2017), as evidenced in Figures 9.3 and 9.4. Relevant to exercise science, evidence suggests 

participants typically focus more upon their semantic interpretation of the numerical 

anchor as opposed to the verbal descriptor (Greenstein and Velazquez, 2017) i.e. ‘What 

does a 5 feel like to me?’. The lack of sensitivity can be countered when assessing exercise 

intensity by utilising the CR100 as opposed to the CR10 scale (E. Borg and G. Borg, 2002; 

E. Borg et al., 2009), providing a more graded but interchangeable assessment of RPE. 
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The CR100 has been used successfully in differential approaches to date (E. Borg and G. 

Borg, 2002; E. Borg et al., 2009; McLaren et al., 2016; 2018), hence our adoption of the 

CR100 in this investigation, but the development of a similar scale for assessing other 

perceptual and exercise-limiting variables such as TC and TS may be beneficial. 

Especially in well trained athletes, who typically display a reduced CV in performance 

(Hopkins and Hewson, 2001; Paton and Hopkins, 2005; 2006) and thus when assessing 

associated perceptual responses lower change scores may produce performance effects 

that are practically valuable, hereby reducing the smallest worthwhile change(s) in these 

metrics.   

The duration and intensity of the exercise bout in the present study also require refinement. 

Both variables were selected in consultation with the athletes’ coach and were based upon 

their current phase of training and perceived capabilities. Whilst this coach engagement 

ensured high levels of ecological validity, increasing the intensity of the exercise bout by 

one verbal descriptor (Somewhat Hard to Hard) and in turn providing a higher anchor of 

RPElegs (~50 AU) may have led to a more appropriate ‘session’ intensity, that was still in 

the range of the athletes’ aerobic threshold (Mann, Lamberts and Lambert, 2013), but may 

have stretched their capabilities to a greater extent than the present prescription. Similarly, 

increasing the session duration to 45 or 60 min, would likely have still allowed the present 

or adjusted intensity to be maintained, as in trained athletes it is noted that this corresponds 

with the pace and physiological milieu that is capable of being sustained for a marathon 

(Sjödin and Svedenhag, 1985; A. M. Jones, 2006), and as such exercise durations greater 

than two hours. These modifications may have provided an exercise stimulus than was 

more representative of competitive running, increasing the specificity of the session, but 

also more closely corresponding to the body of menthol mouth swilling literature 

published to date. This would have allowed for a more direct comparison between studies, 

and better highlighted the novel results obtained in this investigation. However, it is 

acknowledged that the control over athletes’ training and repeated access to a group of 

trained athletes are luxuries afforded to this study.  

To conclude, menthol mouth swilling may present a feasible and practical alternative to 

ice slurry swilling during exercise of 30min, in hot environmental conditions in trained 

runners, although a larger sample size is required to confirm these results. Menthol mouth 

swilling may bring about beneficial reductions in V̇O2 during submaximal running, 

potentially due to hedonic mechanisms, however these sensations do not directly manifest 

as reductions in TC, TS or thirst at the present sample size and employing the current 

forms of assessment, as such a further exploration as to athletes’ qualitative perception of 



 167 

menthol mouth swilling is warranted. The timing of cooling application, perceptual or 

physiological, in the exercise bout is also a valid consideration for future research but it is 

noted that menthol mouth swilling is a of greater value logistically and practically than the 

provision of ice swills during exercise. 
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CHAPTER 9 : ATHLETE EVALUATIONS OF MENTHOL 

MOUTH SWILLING 

 

9.1 Introduction 

There is a distinct lack of menthol mouth swilling research in applied settings with the 

work of Riera and colleagues the only possible exceptions to date (Riera et al., 2014; Tran 

Trong et al., 2015; Riera et al., 2016). Whilst this thesis has aimed to employ an applied 

approach to data acquisition, consulting with athletes’ coaches and opting for ecologically 

valid running speeds (Chapter 7) and individualised intensities corresponding to 

physiological landmarks (Chapter 8), the paucity of ‘real world’ menthol mouth swilling 

research persists. This absence limits the knowledge we have regarding athletes’ 

implementation of menthol containing strategies outside of the laboratory, and their 

perceptions of the potentially ergogenic strategy. Prior to commencing future applied 

research, the perceptions of the athletes who have participated in research to date are 

important to consider, as their reflections may hold key insights into the strategy with 

respect to application and likely uptake in external competitive or training environments. 

Hence, this chapter aims to capture the qualitative experiences of the athletes who 

participated in the research described in chapters 7 and 8. 

 

9.2 Materials and Methods 

Participants from previous investigations were asked to provide verbal feedback on testing 

design and experiences when cooling down, following testing sessions (Reflection). 

Feedback, if expressed, was recorded alongside physiological and subjective data from 

each testing session and so was not limited to menthol solution or testing design, but may 

have further reflected how the athlete felt during the testing bout(s). Brief post-task 

interviews were used to capture the experiences of those who had participated in the 

running research conducted throughout this thesis. Interviews were conducted either via 

FaceTime, Skype or Facebook. 

 

9.2.1 Participants 

Five male participants (Age 20.8 ± 4.3; 5km personal best 15:43 ± 0:26) were recruited 

from previously conducted research for the reflection portion of the investigation. 
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9.2.2 Interview Questions 

Each interview was conducted with no other participant present, either through a FaceTime 

or Skype call, or the Facebook messenger function. Participants were asked six questions, 

with questions grouped into three themes: Menthol experiences, Ecological application of 

menthol and General Feedback. The inclusion of General Feedback allowed for feedback 

obtained following testing sessions to be analysed alongside data obtained via post-task 

interviews. Question order was consistent between participants, due to the logical 

sequencing of questions posed. The questions were as follows: 

1. How did you feel when using the menthol? 

2. How does it compare to other strategies you currently use in training or racing? 

3. Would you be open to using menthol mouth-swilling outside of the lab? 

4. Are there any drawbacks to using menthol mouth-swilling? 

5. Would you recommend menthol mouth-swilling to other athletes? 

6. Have you anything else to add about your experiences? 

 

9.2.3 Coding and analytical approach 

Each data item was given equal attention during coding and thematic analysis as per 

recommendations by Braun and Clarke (Braun and Clarke, 2006). Spelling and other 

grammatical inaccuracies are included. Typically, such inaccuracies would be denoted 

with [sic], however inaccuracies are left in situ to best represent the individual 

communication styles of the participants. 

 

9.3 Results 

Four of the five participants responded to the invitation to be interviewed to obtain 

feedback. Participant study involvement and corresponding chapters are also stated (Table 

9.1). Two of the four participants provided no comment for question 6 (Have you anything 

else to add about your experiences?). Table 9.1 details participants’ responses to all 

questions for completeness; three key themes were identified and are interpreted below: 
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Table 9-1 Participant involvement and responses to questions pertaining to menthol mouth swilling during research and the potential for subsequent ecological application. 

Responses are verbatim, as such any spelling errors are attributed to the participant and not the author. RE: Running Economy; Chapter 7. Tempo: Simulated training 

session; Chapter 8. NR: No response provided. 

Participant: LGT Study Involvement: RE 

Question Response(s) 

How did you feel when using menthol? ‘Felt really good using the menthal, felt was easier to breathe and run and opened up the airways 

which made running feel easier and more comfortable’ 

How does it compare to other strategies you 

currently use? 

‘The only other aid I use is protein shakes just for recovery. There is nothing I do or use pre race to 

try and aid performance but using the menthol I felt a big difference to what I’ve been used to.’ 

Would you be open to using menthol mouth 

swilling outside of the lab? 

‘Without doubt i would love to use the menthol outside of the lab in a natural environment.. It felt 

like it aides performance and would be fascinated to use it in a race and im sure it would aid the 

race as well.’ 

Are there any drawbacks to using menthol 

mouth-swilling? 

‘No drawbacks at all.. It is quick, easy to use and very effective.. Aslong as enough or it is made 

and can be stored and transported to a race there are no issues at all.’ 

Would you recommend menthol mouth-swilling 

to other athletes? 

‘I would deffinately recommend it to other athletes (Maybe not my nearest rivals as id like the edge 

over them in using it) But id happily encourage other people to try and use it and see the difference 

that it has.’ 

Have you anything else to add about your 

experiences? 

‘Reminded me in a way of using airways chewing gum in terms of opening up the airways and 

making breathing a lot easier. However wasnt as overpowering as airways in a good way and was 

much easier to breathe without that minty taste in the mouth and through the nose! Overall just 

made running feel a lot easier. 

Participant: DN Study Involvement: RE; Tempo 

Question  

How did you feel when using menthol? Felt hydrated without having to take water on which benefited me as i get stitches when taking 

water, so felt good 

How does it compare to other strategies you 

currently use? 

Ice was too sensitive for me and was more of a pain to use, using nothing didn't benefit me so the 

menthol was the better of the 3 

Would you be open to using menthol mouth 

swilling outside of the lab? 

Yes 
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Are there any drawbacks to using menthol 

mouth-swilling? 

No, I thought it worked well 

Would you recommend menthol mouth-swilling 

to other athletes? 

Yes 

Have you anything else to add about your 

experiences? 

I think it's a good idea to use just before a race as it made me feel better just before a 5k I did, i 

think it would be useful during 10ks/half marathons instead of taking water on for athletes like me 

who struggle to use water without getting stitches or anything 

Participant: HA Study Involvement: RE; Tempo 

Question  

How did you feel when using menthol? I felt that with the menthol the feeling of freshness remained in my mouth for longer than with just 

water. However, as it was spat out I didn't quite feel that it cooled then back of my throat as well as 

water. 

How does it compare to other strategies you 

currently use? 

As the menthol only has to be swilled I feel that it is advantageous to water as you are not adding 

extra fluids into your system which are felt moving about. 

Would you be open to using menthol mouth 

swilling outside of the lab? 

If the menthol swill was easy to administer I'd use it outside of the lab. 

Are there any drawbacks to using menthol 

mouth-swilling? 

As mentioned, due to not swallowing the menthol solution, the back of my throat didn't still dried 

out. 

Would you recommend menthol mouth-swilling 

to other athletes? 

I'd recommend the menthol swill to other athletes 

Have you anything else to add about your 

experiences? 

NR 

Participant: HBT Study Involvement: RE; Tempo 

Question  

How did you feel when using menthol? felt like it opened my airways a bit 

How does it compare to other strategies you 

currently use? 

If I ever have asthma symptoms I always have ginger to open my airways up as it contains anti-

inflammatory agents and I really feel the difference after. I feel that menthol has similar properties. 

Would you be open to using menthol mouth 

swilling outside of the lab? 

Yes 
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Are there any drawbacks to using menthol 

mouth-swilling? 

No 

Would you recommend menthol mouth-swilling 

to other athletes? 

Yes 

Have you anything else to add about your 

experiences? 

NR 
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9.3.1 Menthol experiences 

The subjective reports of the athletes involved in this study exemplify common responses 

to menthol exposure with associated mechanisms also mentioned. The most common 

experience is that of nasal patency or openness and is reported in 50% of respondents; 

athletes also mentioned feelings of freshness (HA) and thirst satiation (DN). One athlete 

(DN) also reported the potential for menthol to be used prophylactically to counter the 

possible onset of exercise associated transient abdominal pain (stitch), although this 

comment was not independent of comment regarding thirst satiation, the potential for 

menthol to be used as an alternative to counter GI symptoms was noted by another athlete 

as well (HA). 

 

‘As the menthol only has to be swilled I feel that it is advantageous to water as you are 

not adding extra fluids into your system which are felt moving about.’  

HA (2016) 

 

When asked how menthol compares to other strategies currently employed by the athletes 

there was no consensus in responses, and a range of time points discussed; the above quote 

was provided in response to this question. One athlete commented upon the use of another 

botanical ingredient to counter respiratory issues (specifically, ginger for asthma 

treatment). The use of protein supplementation post-exercise, but absence of a pre-

competition nutritional strategy was noted by another athlete (LGT), whom also stated 

they felt menthol may be ergogenic with respect to their performance. The remaining 

respondent referenced their involvement in the research, stating menthol was preferable in 

comparison to ice swilling, as this presented issues regarding oral sensitivity and 

practicality, but also that a control had no effect on performance.  

 

9.3.2 Ecological application 

All athletes responded positively when asked if they would be open to implementing 

menthol mouth swilling outside of the confines of the lab. Responses ranged in length 

from a brief ‘Yes’ (50% of respondents) to more eloquent and enthusiastic replies: HA 

pragmatically stated: 

 

‘If the menthol swill was easy to administer I'd use it outside of the lab.’ 

HA (2016) 
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LGT seconded this willingness for ecological application, and provided more insight into 

his motivation for doing so: 

 

‘Without doubt i would love to use the menthol outside of the lab in a natural 

environment.. It felt like it aides performance and would be fascinated to use it in a race 

and im sure it would aid the race as well.’ 

LGT (2016) 

 

Interestingly, all athletes reported minimal if any negative feelings towards menthol mouth 

swilling with 50% of participants simply responding ‘No’ when asked if they foresaw any 

issues with menthol mouth swilling. The remaining respondents agreed that there were 

limited negative outcomes but raised points concerning transport (LGT) and the potential 

to ingest the swill, with a view to alleviating dry mouth (HA). One athlete (DN) 

subsequently provided quite a detailed overview of the potential competitive distances that 

menthol mouth swilling may prove to be useful, suggesting events ranging from 5km – 

21.1km (half-marathon), especially if athletes have a prior history of GI distress or 

difficulty hydrating during exercise.  

 

9.3.3 Other considerations 

As with the ecological application of menthol, participants responded unanimously that 

they would recommend menthol mouth swilling to their fellow runners, with one athlete 

joking he wouldn’t recommend it to his nearest competitors: 

 

‘I would deffinately recommend it to other athletes (Maybe not my nearest rivals as id 

like the edge over them in using it) But id happily encourage other people to try and use 

it and see the difference that it has.’ 

LGT (2016) 

 

Two athletes provided further detail on their thoughts regarding menthol mouth swilling, 

with one athlete (LGT) focusing on ecological application (reported in 9.3.2), and the other 

referring to a well-known menthol containing chewing gum as a comparison: 

 

‘Reminded me in a way of using airways chewing gum in terms of opening up the 

airways and making breathing a lot easier. However wasnt as overpowering as airways in 
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a good way and was much easier to breathe without that minty taste in the mouth and 

through the nose! Overall just made running feel a lot easier.’ 

LGT (2016) 

 

9.4 Discussion 

The aim of this investigation was to capture the reflective accounts of the athletes who 

participated in the research undertaken in Chapters 7 and 8 of this thesis. The intention 

being to ascertain whether menthol mouth swilling would be an acceptable ergogenic 

strategy beyond the confines of the laboratory, and elucidate participants’ perceptions of 

how this may be achieved, along with any further factors participants wished to raise. To 

this end, three key themes emerged: Menthol experiences, ecological applications and 

other considerations. The remainder of this discussion will place these findings in the 

context of supplement use and beliefs within the athletic population, placebo and nocebo 

effects, and potential future applications of menthol mouth swilling based upon athlete 

recommendations. 

Product use is considered to be governed by a user’s perception of the product, and not 

objective reality of the product’s attributes (Mason and Bequette, 1998). Mason and 

Bequette (1998) proffer a pertinent example of this in that consumers use bad tasting 

mouthwash due to the perception that more bacteria are treated. This trade-off is described 

as an attribute covariance perception (Mason and Bequette, 1998), but can also be 

considered as an assessment of hedonic and utilitarian attitudes (Batra and Ahtola, 1991). 

Batra and Ahtola (1991) describe these factors as an assessment of a product’s sensory 

affect, and ‘expectations of consequences’.  

This bi-dimensional cost-benefit approach is of use to sport and exercise scientists as an 

effective intervention may be heavily weighted towards the utilitarian component, but the 

absence of a hedonic aspect means that there is reluctance in implementation. An example 

of this may be (high dose) sodium bicarbonate or beta-alanine; each supplement is 

underpinned by sound theory, and target established physiological mechanisms that are 

known to limit performance, but are associated with gastrointestinal symptoms and 

paraesthesia, respectively (Maughan et al., 2018). These unpleasant experiences score 

poorly for hedonic value and may limit implementation. Conversely, factors that tend to 

increase hedonic value may be of little utilitarian consequence. There are multiple 

examples of this effect in consumer literature, but common examples are wine (Wiedmann 

and Hennigs, 2012 p. 381; Wolf, Morrish and Fountain, 2016) and luxury goods (Hagtvedt 

and Patrick, 2009; Husic and Cicic, 2009), where products with high hedonic value are 
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perceived to be more desirable but ultimately perform the same function. Returning to 

sports science, effective supplementation strategies exemplify hedonic and utilitarian 

components: Hurst et al., (2017a) provide a worked example where an athlete uses a 

supplement for the first time and attributes any performance improvement to the 

supplement, increasing the likelihood of future use, and potentially influencing the 

efficacy of that supplement within that athlete through a form of Pavlovian conditioning 

(Everitt and Robbins, 2013; Hurst et al., 2017).  

Performance enhancement satisfies both hedonic and utilitarian needs for athletes, but the 

hedonic component can be further enhanced by manipulating factors such as active 

ingredients (de Araujo et al., 2012) colour (de Craen et al., 1996; Szabo et al., 2013; Best 

et al., 2018), taste (de Araujo et al., 2012; Verastegui-Tena, van Trijp and Piqueras-

Fiszman, 2018), and mode of administration (Szabo et al., 2013). As such if a practitioner 

wishes to enhance performance through administration of a sound utilitarian intervention, 

the intervention can be improved upon by tending to these hedonic factors. These effects 

may extend to placebo and nocebo treatments (Kong et al., 2013; Petersen et al., 2014), 

so care must be taken when designing these arms of supplement trials too.   

This balance is best exemplified by the second quote in section 9.3.2, which although 

focuses on the ecological application of menthol specifically states a perception of 

performance enhancement. The same athlete had also previously described how menthol 

balanced hedonic and utilitarian needs (LGT, 206; Table 9.1): ‘Felt really good using the 

menthal [sic], felt was easier to breathe and run and opened up the airways which made 

running feel easier and more comfortable’. These are classic menthol perceptual responses 

(Eccles, 1994), that have also been documented to confer a hedonic effect (Eccles, 2000; 

Eccles et al., 2013).  

Athletes also recommended using menthol prophylactically to counter gastrointestinal 

issues (10.3.3 Other considerations), which commonly affect a large percentage of 

competitive runners across a range of distances (Pfeiffer, Stellingwerff and Hodgson, 

2012; de Oliveira, Burini and Jeukendrup, 2014; Costa et al., 2016; Costa, Hoffman and 

Stellingwerff, 2018). This was attributed to countering the onset of a stitch (DN), and to 

avoid drinking an excessive amount of water (HA). Both of which would likely have 

detrimental effects upon performance (Pfeiffer, Stellingwerff and Hodgson, 2012; 

Stuempfle and Hoffman, 2015; Hew-Butler et al., 2015). Interestingly, menthol has been 

associated with a reduction of gastrointestinal symptoms due to TRPM8 channels acting 

as a possible drug target (Holzer, 2011). So, there may be a mechanistic basis to the 

rationale of menthol supplementation to reduce gastrointestinal symptoms, especially if 
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one were to swallow the swill as recommended by one of the athletes in section 9.3.1; 

Menthol experiences. However, hydration status of the athlete, event duration and 

environmental conditions should be considered if the sole purpose is to reduce the volume 

of water to be consumed during an event, as menthol consumption may attenuate thirst as 

per Chapter 5 and Eccles’ recommendations (Eccles, 2000; Eccles et al., 2013).  

To conclude, menthol mouth swilling is a strategy that presents a blend between hedonic 

and utilitarian components of product attribution in the population that was involved in the 

research throughout this thesis. Further work is needed to elucidate if these effects remain 

outside of the laboratory, but there is a clear desire by athletes for this work to be 

completed and for menthol mouth swilling to be as accessible and effective strategy as 

possible. 
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CHAPTER 10 : SYNTHESIS OF FINDINGS 

 

10.1 Restatement of aims 

This thesis aimed to develop a mentholated solution to impart sensations of perceptual 

cooling, during endurance exercise performance, in trained middle and long distance 

runners at intensities representative of training and competition. The effects of swilling 

this solution were compared to that of other ergogenic strategies, in hot environmental 

conditions.  

Expressly, the preferred concentration of menthol within a mentholated mouth swill was 

derived (Chapter 5; Best, Spears et al., 2018); the preferred colour of this solution was 

also determined, with a view to maximising the perceptual cooling characteristics of the 

solution by taking advantage of sensory associations and expectancy of ‘cool’ products. 

The mentholated mouth swill was then compared to 10% carbohydrate and control swills, 

at rest, in hot environmental conditions (35ºC and 10% humidity; Chapter 6) and 

participants’ physiological and perceptual responses assessed at three minute intervals 

throughout.  

This initial resting experiment was followed by two exercise trials in Chapters 7 and 8. 

The first trial (Chapter 7) aimed to determine the effects of mentholated mouth swilling 

upon ventilatory, physiological, performance and perceptual responses when administered 

at typical training and competitive intensities (14 – 20km.h-1 + 1km time trial), in 

temperatures pertinent to British middle and long distance runners (14ºC and 28ºC). The 

second trial (Chapter 8) again assessed the ventilatory, physiological and perceptual 

responses of athletes during exercise, but assessed these parameters during a simulated 

training session which consisted of 30-minutes at a fixed rating of perceived exertion, 

(RPElegs corresponding to the onset of ≥2mmol [La]) in hot environmental conditions 

(35ºC and 10% humidity). Menthol mouth swilling was compared to ice swilling, thus 

comparing perceptual and physiological cooling strategies.  

Finally, Chapter 9 aimed to capture participants’ feedback on menthol mouth swilling 

during exercise and capture their thoughts on the potential for application outside of the 

laboratory either in training or competition (Chapter 9). 

 

10.1.1 Principle findings 

This section details the principle findings of the thesis, on a per chapter basis, progressing 

through Chapters 3 – 9.  
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The thesis proper, began by assessing and quantifying the magnitude of and accompanying 

uncertainty within performance changes brought about by topical and ingested cooling 

strategies (Chapter 3; Best, Payton et al., 2018). The relationship between the timing of 

cooling strategies around an exercise bout and exercise performance was also determined, 

with a combination of pre and percooling shown to be most effective i.e. cooling before 

and during the event in combination. Menthol containing strategies that were ingested 

prior to and during the exercise bout produced the largest effects upon performance in this 

meta-analysis (Best, Payton, et al., 2018).  

Due to the menthol content within the cooling strategies that demonstrated the greatest 

ergogenic effect upon time trial performance (Chapter 3; Best, Payton et al., 2018), the 

role of different modes of menthol administration upon exercise performance were further 

scrutinised (Chapter 4; Stevens and Best, 2017). Menthol has been applied orally and 

topically during exercise, with most evidence suggesting a greater ergogenic potential 

when used as a mouth swill or within other fluids during endurance activity, thus 

supporting the findings of Chapter 3. Lesser effects are observed when applied topically, 

especially with respect to muscular function and force production (Chapter 4; Stevens and 

Best, 2017).  

Differences in menthol concentration of oral application strategies were also noted as part 

of the systematic review presented in Chapter 4 (Stevens and Best, 2017), hence Chapter 

5 (Best, Spears, et al., 2018) established the preferred concentration of menthol within a 

mouth swill to be utilised in subsequent investigations. Concentrations of 0.095% and 

0.105% were seen to be more highly rated than other solutions with respect to total solution 

score (Chapter 5; Best, Spears, et al., 2018). Colour preference was also included in this 

investigation, as this has been shown to influence product experience, and may enhance 

the ergogenic properties of menthol mouth swilling when administered by clinicians or 

practitioners. In addendum to the published work presented in Chapter 5 (Best, Spears, et 

al., 2018), further analysis of the constituent components of total score by multiple 

regression found that participants rated solutions more highly if they were deemed more 

pleasant, with respect to irritation and mouth feel. This suggests that participants value a 

solution that is well tolerated, as opposed to being highly rated for taste, smell or freshness. 

The physiological and perceptual responses to the preferred swill were then compared to 

carbohydrate in a hot environment at rest (Chapter 6). Small increases in heart rate were 

observed after carbohydrate and water swilling, with moderate differences in Ttymp 

between control and all testing blocks. When swilled, menthol improved TC by a small 

extent relative to carbohydrate and water, also moderately reducing TS and thirst when 
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compared to the other experimental conditions. These effects persisted when dietary 

carbohydrate intake of the participants were controlled for via MANCOVA. 

Chapter 7 examined responses to menthol mouth swilling at typical training and 

competitive intensities in cool (14ºC) and hot (28ºC) conditions, in trained distance runners 

(V̇O2max > 60ml.kg-1.min-1). Responses across all perceptual and physiological measures 

showed a high degree of inter-individual variability, but V̇E tended to increase following 

menthol swilling in the heat, with a large decrease in RPEover observed following the 

conclusion of a 1km time trial in the same condition. This apparent improvement cannot 

be attributed directly to menthol due to a more conservative pacing strategy being adopted. 

When compared to a physiological cooling strategy in Chapter 8, menthol mouth swilling 

showed potentially advantageous decreases in V̇O2 as athletes progressed through the 

fixed intensity exercise bout. This change in oxygen consumption occurred in the absence 

of changes in V̇E, Ttymp and dRPE. Physiological cooling by ice swilling, elicited a more 

rapid (TC) or greater magnitude (thirst) of change in perceptual variables, when compared 

to a control than menthol. However, menthol also demonstrated moderate reductions in 

thirst at the start of the exercise bout and improved TC at the end of the exercise bout, 

suggesting that menthol mouth swilling may be a more practical on course or in training 

solution in the absence of availability of physiological cooling agents.  

Finally, to conclude the thesis, qualitative reflections from participants were captured to 

document their experiences of menthol mouth swilling during exercise and assess the 

potential ecological application of menthol mouth swilling in athletic populations (Chapter 

9). Menthol mouth swilling was considered a balance hedonic and utilitarian components 

of product attribution in a potential target population of athletes. It is unclear whether these 

positive effects remain outside of laboratory settings, but there is a strong desire by athletes 

for such applied work to be conducted and for menthol mouth swilling to be accessible. 

 

 

10.2 General Discussion 

10.2.1 Training and competitive implications 

The following section will outline the scope of menthol mouth swilling in specific training 

and competitive scenarios. This discussion will be limited to the context in which menthol 

mouth swilling will be employed, as opposed to the practicalities of delivering within these 

environments, which are discussed subsequently. 
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10.2.1.1 Menthol as a supporting strategy during heat acclimation 

Previous research has shown menthol mouth swilling to acutely improve time to 

exhaustion (Mündel and D.A. Jones, 2009; Flood, Waldron and Jeffries, 2017; Jeffries, 

Goldsmith and Waldron, 2018) and time trial performance (Riera et al., 2014; Tran Trong 

et al., 2015; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016; Riera et al., 

2016). Similarly, pre-and percooling strategies may also improve exercise performance in 

the heat (Stevens, Taylor and Dascombe, 2016; Best, Payton, et al., 2018) when applied 

for a single (Marsh and Sleivert, 1999; Quod et al., 2008; Duffield et al., 2010) or between 

bouts of exercise (Tran Trong et al., 2015; Galpin et al., 2016; Chan et al., 2017). Little is 

known, however, about how these strategies can be implemented in training alongside a 

heat acclimation protocol or training camp. The use of pre-and percooling strategies to 

support key, but not all, sessions within a heat acclimation protocol or training camp may 

allow for either a greater training duration or intensity, or a greater time at an elevated core 

temperature. This extended exposure to heat stress may provide further adaptations that 

would otherwise not have been attainable by the athlete, as sufficient time under heat stress 

may not have been attained, or may have come with an increased cost e.g. a compensatory 

adjustment in subsequent training sessions or the onset of heat illness.  

Ecologically, the use of menthol mouth swilling in a laboratory-based acclimation 

programme would be easy to administer, and monitor the effects of administration upon 

performance, underpinning physiological adaptations and subjective outcomes. Variation 

in training session stimulus throughout the acclimation protocol would also allow for 

further exploration into the efficacy of menthol mouth swilling in the heat. Likewise, if 

one were to employ menthol mouth swilling over the course of a heat training camp, it 

would be prudent to target long runs, where increased heat storage is a product of exercise 

duration i.e. greater opportunity for heat accumulation. Interval sessions that allow for 

regular, repeated aliquots of the mouth swill to be utilised such as in Chapters 7 and 8 

would also be sensible choices. Within these sessions an increase in heat storage is likely 

due to increased metabolic heat production (Mora-Rodriguez, Del Coso and Estevez, 

2008), as exercise intensity and anaerobic contribution is greater (Febbraio et al., 1996), 

coupled with a decrease in evaporative heat loss (Kenny et al., 2009; Kenny and Jay, 

2013), and lowered skin blood flow (González Alonso, Crandall and Johnson, 2008; 

Crandall and González-Alonso, 2010). Interval sessions would also account for the 

potential for menthol to attenuate sensations of breathlessness, or increased RPElung 

brought about by high intensity running, as per Chapter 7. 
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Menthol mouth swilling may also be a useful addition to adjunct heat acclimation 

strategies such as hot water immersion (Zurawlew et al., 2016; Zurawlew, Mee and Walsh, 

2018), or the wearing of additional clothing (Stevens, 2018), where the treatment elicits 

either a heat maintenance (hot water immersion) or heat storage (additional clothing) 

response. In these instances, as is often reported during exercise, menthol may serve to 

ameliorate thermal comfort and sensation, again extending the time for which an athlete is 

exposed to the adaptive stimulus. Whether using menthol directly to support heat 

acclimation, or to support adjunct strategies, care must be taken to monitor athletes for 

signs of heat illness, or increased physiological strain that does not return to normal upon 

sufficient recovery, as the possible negative effects of extended or repeated heat exposure 

following perceptual cooling (i.e. menthol) is not currently known (Stevens and Best, 

2017; Best, Payton, et al., 2018). 

 

10.2.1.2 Ultra-endurance activity and gastrointestinal upset 

Approximately 30-50% of endurance athletes experience gastrointestinal issues (de 

Oliveira, Burini and Jeukendrup, 2014), and typical estimates in ultra-endurance athletes 

are >60%  (Gaskell, Snipe and Costa, 2019), with incidences as high as 93% reported 

(Jeukendrup et al., 2000) following an Ironman™ triathlon. There is also variability of 

prevalence reported between training and competition (Pugh et al., 2018), and the potential 

for differences in onset of gastrointestinal symptoms between exercise modalities 

(Pfeiffer, Stellingwerff and Hodgson, 2012; Costa et al., 2017). Prevalence also increases 

with exercise intensity and duration (Pfeiffer et al., 2012; Costa et al., 2016; 2017), and 

may be further exacerbated by the heat (Glace, Murphy and McHugh, 2013; Guy and 

Vincent, 2018), due to factors such as translocation of lipopolysachardies potentially 

inducing endotoxemia (Guy et al., 2016). Attenuating these symptoms through 

mentholated product ingestion would likely improve training time and intensity and reduce 

race attrition. Menthol mouth swilling may also allow for a welcome break from 

carbohydrate ingestion or swilling towards the end of non-ultra-endurance events, or 

respite from carbohydrate dominant strategies in ultra-endurance activity, where flavour 

fatigue may be considered a limiting factor (Costa et al., 2014; Costa, Hoffman and 

Stellingwerff, 2018).  

Menthol ingestion, in some form, may also warrant consideration in long or hot events 

where gastrointestinal injury is a likely side effect of participation. Peppermint is 

commonly used to treat gastrointestinal symptoms, and has been shown to be effective in 

the alleviation of symptoms related to irritable bowel syndrome (Kline et al., 2001; Ford 
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et al., 2008; Alammar et al., 2019), and to a lesser extent reduce nausea (Tate, 1997; B. 

Lane et al., 2012), colonic tension (Shavakhi et al., 2012), and flatulence (Kline et al., 

2001). Peppermint may also improve rate of gastric emptying (Inamori et al., 2007). These 

findings suggest that the administration of menthol, which is a natural derivative of 

peppermint oil, may have potential therapeutic benefits that may be useful for athletes that 

suffer with gastrointestinal issues (Holzer, 2011), and extend beyond the stimulation of 

TRPM8 receptors as a mediator of cold temperature detection (Bautista et al., 2007; Gavva 

et al., 2012). Ginger has previously been used to mitigate gastrointestinal issues in elite 

ultra-marathon runners (Stellingwerff, 2016), suggesting a consumer appetite for natural 

or plant based strategies in this population.  

 

10.2.2 Practical implications 

There are several practical implications elucidated by the research conducted in this thesis, 

that should be borne in mind if menthol mouth swilling is to be implemented outside of 

the confines of a laboratory by practitioners, or to further strengthen experimental design.  

 

10.2.2.1 Individual variation in menthol preference 

Individual variation in menthol preference may be a predictor in assessing an athlete’s 

response to menthol mouth swilling. In Chapter 5, no statistically significant differences 

between participants’ ratings of menthol concentrations were found, but small 

standardised differences in means were noted. Visually, elevations in VAS rating seem to 

appear at low, medium and high menthol swill concentrations (see Figure 5.1A), hinting 

at the possibility of thresholds for menthol liking; these thresholds may have been more 

apparent had fewer solutions been assessed. Similarly, the addendum to Chapter 5 

highlights that participants respond to the solution that causes the least irritation and has 

the most pleasant mouth-feel. 

Physiological and cultural differences are two plausible explanations for the emergence of 

menthol liking thresholds within the data set. Physiologically, this variation may be 

explained in part by genetic factors relating to the expression of TRPM8 receptors 

(Morgan, Sadofsky and Morice, 2015),  the sensitivity of their trigeminal nerve (Viana, 

2011; Frasnelli et al., 2011; Michlig et al., 2016), and one’s ability to differentiate between 

trigeminal stimuli (Cliff and Green, 1996; Frasnelli et al., 2011), as well as the thickness 

of the stratum corneum in the area under menthol exposure (H.R. Watson et al., 1978). 

Whereas cultural differences may dictate factors such as menthol concentration within 

products, and in doing so expose an individual to a higher or lower concentration of 
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menthol acutely or chronically if one is a habitual consumer, which in itself can alter 

sensitivity to menthol (Kalantzis, Robinson and Loescher, 2007; Patel, Ishiuji and 

Yosipovitch, 2007; Klein et al., 2010; Botonis et al., 2016). The role and time course of 

habituation to menthol at an individual level has practical implications upon an athlete, or 

practitioner, aiming to assess menthol mouth swilling in training, with a view to 

implementing in competition. This may mean purposefully withholding menthol 

containing stimuli from their diet, or not using menthol mouth swilling in selected sessions 

to deliberately increase subjective factors such as thermal discomfort and sensation.  

 

10.2.2.2 Interfering with hydration and thirst  

In Chapter 6, it was found that menthol may mimic the effects of swilling water around 

the oral cavity in as much as it can reduce thirst, whilst concomitantly improving measures 

of thermal comfort and thermal sensation. These small to moderate effects remain when 

dietary carbohydrate intake is controlled for, which may affect the effectiveness of 

carbohydrate mouth swilling during exercise trials in some instances (Fares and Kayser, 

2011; S. C. Lane et al., 2013; Che Muhamed et al., 2014), but is not entirely supported 

(Ali et al., 2016). Chapter 6 served as a proof of concept of Eccles’ model ((Eccles, 2000; 

Eccles et al., 2013) Figures 10.2 and 10.4), in that thirst was reduced as a result of menthol 

stimulation of the oral cavity.  

Whilst thirst is not performance limiting per se (Cheuvront et al., 2010; Sawka, Cheuvront 

and Kenefick, 2015; Kenefick, 2018), the opportunity to implement a strategy that 

attenuates thirst at a lower weight cost than swilling from a water bottle may confer an 

energetic (W/kcal saved due to weight minimised) and resultant performance (time trial 

performance) advantage to a rider or runner.  

Exercise durations of approximately one hour e.g. 40km time trial, may be a useful starting 

point for implementation, as they can be performed competitively with minimal need for 

exogenous fuelling strategies due to not entirely depleting endogenous carbohydrate stores 

(Fares and Kayser, 2011), and represent a relevant performance test which displays a low 

coefficient of variation in lab and outdoor settings (Smith et al., 2001). 

A natural extension of this work would be to assess the effectiveness of menthol mouth 

swilling upon exercise performance following graded levels of hypohydration, as this 

further acts as a driver of thirst (when expressed as a change in blood osmolality), as per 

Figures 10.2 and 10.4 (adapted from (Eccles, 2000; Eccles et al., 2013). A hypohydration 

range of 2-4% is representative of those typically attained during training or competition 
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and so is recommended. This has relevance for not only elite athletes, but also recreational 

exercisers who have professions which may predispose them to becoming hypohdrated. 

 

10.2.2.3 Flavour fatigue and habituation: two sides of the same coin 

Flavour or taste fatigue is a concern for athletes during prolonged endurance activity, and 

ultra-endurance competitions. It is brought about by repetition of a flavour stimulus which 

in effect acutely desensitises taste receptors to a previously pleasant or tolerable flavour. 

In endurance sports, flavour fatigue is commonly associated with carbohydrate containing 

products as they are sweet, so a contrasting stimulus that, in the case of menthol, is cooling 

may serve to counter this, as these stimuli target and are transduced by different TRP 

receptors than sweet flavours (TRPM5; (Liu and Liman, 2003)). Severity and consequence 

of flavour fatigue can vary greatly, from a practitioner having to alter a feeding strategy to 

an inability for an athlete to tolerate foodstuffs, potentially leading to race withdrawal if 

prolonged and severe. This is also seen in menthol’s counterirritant capsaicin (Karrer and 

Bartoshuk, 1995; Cliff and Green, 1996; Kalantzis, Robinson and Loescher, 2007). 

Similarly, given menthol’s increasing status as a potential ergogenic aid we must remain 

open to the possibility that one may become habituated to the strategy and the ergogenic 

potential of the stimulus diminishing, accordingly. This may be able to be predicted to a 

certain extent by simple questions that outline an athlete’s use and preference for menthol 

containing or mint flavoured products. These questions may elucidate an athlete’s 

acceptability and typical usage of menthol products; if usage remains consistent despite 

the introduction of menthol mouth swilling in training or competition and the athlete is 

still demonstrating improvements in perceptual or performance outcomes, it may be safe 

to assume habituation has not taken place. Conversely, if the athlete is avoiding or reducing 

their consumption/use of other menthol containing products, or reporting lower perceptual 

responses to the intervention independent of accompanying improvements in 

physiological markers (e.g. Tcore, sweat rate), it may be assumed that habituation has 

occurred.  

Habituation of thermal sensation has been observed when a moderate menthol 

concentration of 0.2% was applied topically over the course of a week (Gillis et al., 2015). 

This habituation response was attributed to a pathway specific to thermal sensation, as it 

occurred independent of other physiological or perceptual responses (Gillis et al., 2015). 

Similarly, habituation to sweet stimuli have been reported (Leterme et al., 2008), and are 

attributed to gustative habituation to sweet taste, as opposed to a reduction in pleasure 

derived from exposure to sweet stimuli. Conversely this response is yet to be observed in 
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menthol mouth swilling, as evidenced in Chapter 6, wherein the elevated heart rate 

observed in response to carbohydrate and water swilling is explained at least in part as an 

anticipatory rise of heart rate brought about by expectation of hedonic stimuli. This 

response is absent in an acute menthol stimulus, as it is yet to be conditioned or habituated, 

but as responses to topical application of menthol can be habituated (Gillis et al., 2015), it 

is reasonable to suggest that oral cold receptors can also become habituated to menthol 

containing stimuli, at appropriate concentrations through a similarly mediated or 

trigeminal pathway. 

 

10.2.2.3 Combining function and form 

Menthol, in comparison to other established sports nutrition strategies, is simply a flavour 

molecule that exerts some measurable physiological effects, but predominantly targets 

perceptual sensory cues related to temperature through stimulation of oral cold receptors 

(Eccles, 1994; 2000; 2003; Eccles et al., 2013), mediated through TRPM8 receptors 

(Bautista et al., 2007; Frasnelli et al., 2011) and the trigeminal nerve (Eccles, 1994; Patel, 

Ishiuji and Yosipovitch, 2007; Frasnelli et al., 2011). Despite ‘only’ being a predominantly 

perceptual cooling agent, menthol has demonstrably improved performance in time trial 

and time to exhaustion tests. A sports science practitioner or athlete may however be 

reluctant to employ a menthol mouth swilling strategy as other factors such as substrate 

availability, hydration status or elevated core temperature may limit performance to a 

greater extent than impaired thermal comfort, or elevated thermal sensation. Hence, 

combining menthol with other ergogenic strategies that target factors that physiologically 

limit performance is a prudent and economical option. 

Menthol has been shown to exert a temperature dependent effect upon cycling (Riera et 

al., 2014) and triathlon (Tran Trong et al., 2015) training performance when combined 

with physiological cooling strategies, eliciting moderate improvements (Best, Payton, et 

al., 2018) when consumed before and during exercise. These findings were then 

challenged to some extent, by the same research group (Riera et al., 2016) as when 

completing a 30km cycling time trial, the combination of pre and percooling with a cold 

beverage and menthol ice slurry respectively, evoked trivially slower performances (3815 

± 455 s) relative to percooling with menthol ice slurry only (3737 ± 522 s). The authors 

suggest that as time trial differences were not statistically significant and the combination 

of pre and percooling significantly (p < 0.05) lowered RPE during the latter stages of the 

time trial, that a combined cooling approach may be most useful in longer endurance 

events, confirming their previous findings (Riera et al., 2014; Tran Trong et al., 2015) ex 
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post facto. The lack of performance enhancement over the shorter time trial duration may 

be attributed to attaining a trigeminal sensory threshold, whereby the cold stimulus is 

perceived as too cold by targeting physiological and perceptual mechanisms 

simultaneously.  

Assessing tolerance for such strategies is advised prior to implementation; overstimulation 

of the area neighbouring the trigeminal nerve can lead to sphenopalatine ganglioneuralgia 

(brain freeze) (Bird, MacGregor and M. I. Wilkinson, 1992; Hulihan, 1997; Mages et al., 

2017) or migraine (Viana, 2011) following aggressive cooling of the oral cavity. Such 

consequences may be avoided by lowering the menthol concentration of an ice slurry 

solution, or by increasing the water content of the slurry. There is a tendency for ice slurries 

to be manufactured with commercially available carbohydrate electrolyte beverages 

(Gatorade™; (Siegel et al., 2010; 2011; M.L. Ross, Garvican and Jeacocke, 2011)). If 

menthol were to be included in an ice slurry, electrolytes may warrant exclusion from the 

solution as salt depresses the freezing point of water, potentially increasing the risk of 

sphenopalatine ganglioneuralgia or migraine in susceptible individuals.  

Carbohydrate provision during or prior to exercise is considered ergogenic and already has 

a familiar association with menthol through several commercial products such as Kendal 

mint cake, breath-mints and fisherman’s friends. There is an established body of literature 

showing carbohydrate ingestion (Gant, Stinear and Byblow, 2010; Jeukendrup, 2014) or 

swilling (Carter and Jeukendrup, 2004; Chambers, Bridge and Jones, 2009) to be 

beneficial to exercise performance and capacity; this benefit occurs independent of 

sweetness (Rollo and Williams, 2011). The rate of carbohydrate provision and thus 

oxidation can be increased by providing multiple transportable carbohydrates 

(Jeukendrup, 2010), which in turn decreases oxygen consumption and the risk of 

gastrointestinal upset (Stellingwerff, 2012; Best, Barwick, et al., 2018). The notion of a 

carbohydrate and menthol mouth swill is perhaps most appealing as it combines two 

strategies in one bolus. Chapter 6 presented evidence to suggest that menthol can alleviate 

thirst, independent of carbohydrate intake, suggesting that there would be limited 

interference between ergogenic aids if they were to be combined into one strategy. 

Equally, the addition of carbohydrate may make menthol more appealing, as shown in 

Chapter 5, there are a wide range of menthol preferences and the possibility to further 

personalise this intervention by manipulating sweetness may ensure that a beneficial 

menthol concentration is maintained in solution, despite a personal dislike. This combined 

approach may be limited in its application however, as carbohydrate mouth swilling is 

perhaps best employed either in a fasted state (Fares and Kayser, 2011; Che Muhamed et 
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al., 2014), or when muscle glycogen stores are not considered limiting provided adequate 

prior nutrition e.g. 40km cycling race; half marathon. One must also consider athlete ‘buy-

in’ or willingness to adopt a strategy, and it is uncertain as to whether the inclusion of 

carbohydrate into a menthol solution would diminish the currently documented 

enthusiasm for the strategy, as per Chapter 9. 

Unlike carbohydrate, caffeine may not present a natural pairing with menthol. Despite 

being incredibly understood and an established ergogenic (Burke, 2008; Pickering and 

Kiely, 2017; 2018), caffeine is typically bitter (Lipchock et al., 2017; Poole and Tordoff, 

2017; Gramling, Kapoulea and C. Murphy, 2019) and so may counter the natural freshness 

associated with menthol (Eccles, 1994; Patel, Ishiuji and Yosipovitch, 2007; Best, Spears, 

et al., 2018). Although, there is a paucity of literature about how menthol relates to power 

or repeated sprint performance (O.R. Gibson, Wrightson and Hayes, 2018), and pairing 

menthol with caffeine may provide an additive effect to that of menthol or caffeine when 

applied in isolation in power based events in the heat. 

The form of menthol and any ergogenic aid it is combined with warrants practical 

consideration too. Liquids likely are the most practical, as they can be administered at feed 

stations, easily transported during exercise and to events, but the potential for menthol to 

attenuate thirst (Chapter 6) suggests this may not always be the best option. Ice slurry 

presents an appealing combination when performance is physically and perceptually 

limited by temperature, but the strategy is accompanied by logistical and technical hurdles. 

Finally, a gel or gum would allow for a small dose of carbohydrate to be mentholated and 

easily packaged, ensuring an even load of menthol and potential fuel throughout an event, 

with greater control over the dose and concentration of menthol compared to the other 

potential forms outlined. 

Ultimately the decision to combine menthol with other ergogenic strategies, or vice versa, 

will be dependent upon athlete preference, the rules of competition, feeding frequency 

available to supporting practitioners and timing relative to desired performance outcomes. 

 

10.2.3 Research implications 

Menthol mouth swilling remains a novel nutritional strategy that is potentially ergogenic 

in athletic populations, under certain environmental and regulatory constraints. Despite 

the work undertaken for this thesis and critical reflections thereafter presented above as 

future practical and training implications, questions pertaining to menthol mouth swilling 

remain. This section groups these future research questions into four key themes: 
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10.2.3.1 Method of dilution 

Differences in menthol mouth swill preparation remain within the literature. The method 

employed within this thesis and published as Chapter 5 (Best, Spears, et al., 2018) consists 

of dissolving a dose of menthol crystals (g) in a volume of ethanol so as to produce a 5% 

solution. This stock solution is then diluted to the appropriate experimental concentration, 

the colour of which can then be manipulated if desired. For the purposes of this thesis the 

desired concentrations ranged from 0.005 to 0.105% in Chapter 5, with a concentration of 

0.1% employed during experimental trials (Chapters 6-8).  

The use of an alcohol as a solvent was advised as necessary by the institute’s head 

laboratory technician as menthol is less dense than water, at 0.89 g·cm3 compared to 0.997 

g·cm3 respectively. Menthol’s lesser density relative to water means that if a solvent is not 

used to manufacture a mentholated solution, an opaque, thin, white film forms upon the 

solution (personal observations) in most instances. Swilling menthol in hot environmental 

conditions may mitigate this limitation slightly as the temperature of the oral cavity and 

the environments typically investigated are similar to the melting point of the (-)-isomer 

of menthol (37.78-43°C; National Center for Biotechnology Information, 2019). However, 

if not fully dissolved the remaining crystalline film will likely negatively impact upon the 

qualitative experience of menthol mouth swilling, and athletes may be less likely to 

employ the strategy in future. This warrants practical consideration too, if menthol mouth 

swills were to be commercialised an appropriate vessel and preparatory procedure would 

need to be developed to avoid a film forming prior to use. It is unlikely that the classic 

instruction ‘shake well before use’ would result in an even distribution of the film, and 

thus negatively impact upon the characteristics assessed in Chapter 5 and the 

accompanying addendum. 

Jeffries’ group describes an alternative dilution method whereby menthol and water are 

heated to 40°C at a 0.01% concentration, cooled then stored for up to two months (Flood, 

Waldron and Jeffries, 2017; Jeffries, Goldsmith and Waldron 2018). This method of 

dilution targets menthol’s relatively low melting point as a method for dilution, and by 

heating menthol and water may increase the volatility of the solution, if implemented soon 

after the dilution, as heating generates excitation of water and menthol molecules, 

potentially presenting as a more potent olfactory stimulus (at least in the short term) than 

our method of dilution. This hypothesis is partially supported by the lower experimental 

concentration employed within this investigation, although the olfactory integrity of this 

method of dilution remains to be established and / or compared to that presented in Chapter 

5. Establishing differences between dilution methods is important to ensure a consistent 
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menthol stimulus can be presented to an athlete during training or competition, and diluted 

solutions can retain their ‘freshness’ if they are to be stored or transported to events that 

take place over multiple days, or even weeks as may be the case for the Olympic Games, 

or most World Cup formats. 

Other groups have utilised the same concentration of menthol as Jeffries and colleagues 

(Mündel and D.A. Jones, 2009; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 

2016; O.R. Gibson, Wrightson and Hayes, 2018), yet report a much simpler dilution 

procedure of crushing menthol crystals and dissolving these crystals in deionised water. 

The dilution is typically reported to take place in ambient laboratory conditions (Mündel 

and D.A. Jones, 2009; Stevens, Bennett, et al., 2016; Stevens, Thoseby, et al., 2016; 

Gibson, Wrightson and Hayes, 2018), but all experimental procedures, and thus 

administration of menthol, took place in temperatures approaching menthol’s melting 

point (33-40°C (Mündel and D.A. Jones, 2009; Stevens, Bennett, et al., 2016; Stevens, 

Thoseby, et al., 2016; Gibson, Wrightson and Hayes, 2018)).  

These methodological differences likely explain why no crystalline films are reported 

within the menthol mouth swilling literature to date, as all methods of dilution and 

administration directly or indirectly take place at the melting point of the isomer of 

menthol used for research purposes. It is worth noting that a crystalline film could 

inadvertently elicit a much more potent menthol stimulus than that of a mouth swill, as 

one would effectively be ingesting a concentrated bolus of a high percentage menthol 

crystal. 

The need for a ‘gold standard’ menthol dilution procedure is not necessarily warranted as 

each method is not without its own limitations, but a comparison between methods of 

dilution at a matched concentration warrants investigation as they may bring about 

different responses to subjective measures and V̇E, or associated respiratory measures, and 

may demonstrate differences in product consistency and shelf-life. 

 

10.2.3.2 Elucidating mechanisms and expanding Eccles’ models  

Figures 10.2 and 10.3 display the effects of menthol upon oral and upper airway cold 

receptors respectively, as first outlined by Eccles (2000). Figures 10.3 and 10.4 present 

updated models of menthol’s effects upon oral and upper airway cold receptors, using 

evidence presented in this thesis (Chapters 5-9). In this subsection, the outcome variables, 

thirst and ventilation will be discussed, along with the potential consideration of hydration 

status. The potential role of habituation to menthol mouth swilling has been discussed in 

sections 10.2.2.1 and 10.2.2.3. 
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Figure 10-1 Effects of menthol application upon thirst and associated factors as per Eccles (2000) 

 

Figure 10-2 Effects of menthol application upon ventilation and associated factors as per Eccles (2000) 
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Figure 10-3 Effects of menthol application upon thirst and associated factors updated to include the findings 

of this thesis, other works and proposed future routes of investigation. 

 

Figure 10-4 Effects of menthol application upon ventilation, updated to include the findings of this thesis 

and future considerations 

Thirst was assessed throughout Chapters 6 – 8 of this thesis; both at rest and during 

exercise. The rationale for this was twofold: firstly, thirst provides valuable homeostatic 

information when exercising under hot conditions, and secondly menthol has previously 

been reported, as expressed by the models above, to satiate thirst (Eccles, 2000; Eccles et 

al., 2013). Importantly, as defined by Epstein (1991), thirst is best represented ‘as a 

motivational state of readiness to consume water’ (Epstein, 1991) and is not simply 
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drinking behaviour, but the drive that provokes this response and is accompanied by 

hedonic experiences upon satiation (Epstein, 1991; Eccles, 2000). Physiological, transient 

states such as a ‘dry mouth’ may correlate to an increase in thirst but are not considered 

robust indicators of thirst in and of themselves.  

At rest in a hot environment in non-heat acclimated individuals (Chapter 6) we found 

menthol to be a water mimetic, and thus was capable of satiating thirst as well as water 

and exceeding carbohydrate’s ability to do so. Typical reductions in thirst were found to 

be -0.92 ± 0.25 and -0.57 ± 0.25 arbitrary units with respect to a no swill control and 

carbohydrate swill (moderate differences). Greater variation in thirst responses was seen 

during exercise (Chapters 7 and 8), this may be attributed in part to the perceived 

respiratory load imposed by the exercise, especially at higher running velocities (Chapter 

7), or during continuous exercise (Chapter 8). 

Ventilatory responses to exercise and menthol mouth swilling also displayed variation in 

this thesis, but did trend upwards with increased running speed (Chapter 7), and as exercise 

duration progressed when expressed relative to physiological cooling (Ice; Chapter 8). 

These findings somewhat mirror the trends observed with thirst, and suggest that menthol 

induced increases in V̇E, may indeed promote thirst due to an increased flow of air brought 

about by a supressed respiratory drive as per Figures 10.1 and 10.3.  

In the athletes in the chapters which assessed exercise performance, an increase in V̇E may 

have been perceived as inhibitory to their performance, as increased V̇E requires an 

increased tidal volume and or respiratory frequency, which may be accountable for an 

increase in RPElung, which was also synonymous with higher running speeds in menthol 

conditions. However, heat was a greater driver of V̇E in this investigation than menthol 

mouth swilling, suggesting that well-trained athletes are more responsive to temperature, 

than to temperature mimetics i.e. they require greater input to alter oral cold perception 

and so attenuate RPElung and thirst. This may suggest that the greater the training status of 

an athlete, the more potent the perceptual cooling stimulus needed to produce a desired 

effect. If so, combined physiological and perceptual strategies such as those employed by 

Riera and colleagues (Riera et al., 2014; Tran Trong et al., 2015; Riera et al., 2016) may 

meet this demand. 

The potential role of hydration status is highlighted in Figures 10.1 and 10.3, as expressed 

by blood osmolality. In hindsight, hydration status can be easily assessed upon arrival to 

the laboratory, via refractometry, specific gravity or a urine colour chart (Armstrong, 2007; 

McKenzie, Munoz and Armstrong, 2015), and may have been a fascinating covariate in 

the analyses undertaken within this thesis. Blood osmolality is affected by water intake 



 194 

which is provoked by thirst. This thesis has shown that menthol mouth swilling can 

directly influence thirst and as such investigating the potential role of hydration status as 

it affects menthol’s efficacy as an ergogenic aid is warranted. This may take place either 

pre-experiment via manipulations in percentage bodyweight loss before undertaking 

exercise (graded hypohydration), or by assessing per- and post-exercise fluid intake 

following menthol mouth swilling. 

 

10.2.3.3 Timing of application 

The timing of menthol application in relation to exercise has typically followed a regular 

pattern with researchers using time or distance completed to prescribe application intervals 

in the oral literature, and pre-exercise or continuous application, through use of a soaked 

garment for example, being most common in the topical literature.  

Details of research conducted to date are noted in the table below (Table 10.1), and are 

categorised by method of application (oral and topical), and sub-categorised by exercise 

protocol. For completeness, topical literature is also included, as topical application of 

menthol also targets TRPM8 receptors, but the thickness of the stratum corneum at the site 

of application will be thicker than that of the oral cavity (H.R. Watson et al., 1978). Topical 

literature also employs a different frequency of application to menthol mouth swilling 

literature, which demonstrates greater feasibility as a percooling strategy, compared to the 

pre-exercise timing employed in topical investigations. 

If one calculates an average N of menthol exposures via oral application it approaches five 

applications per bout, irrespective of timing. This repeated approach presents a consistent 

stimulus to the oral cavity and may serve to regularly reset or refresh the trigeminal 

sensation, and subsequent interpretation of temperature. Performance is therefore 

improved because the environmental temperature is perceived as less deleterious (i.e. 

perceptual cooling), and may be accompanied by reductions in thermal sensation, and / or 

improvements in thermal comfort. However, most recently Jeffries et al., (2018) 

demonstrated that the administration of a single menthol mouth swill at 85% of previously 

attained TTE, improved performance to a practically meaningful extent (Jeffries, 

Goldsmith and Waldron, 2018). This suggests that a more nuanced application of menthol 

mouth swilling during the bout may be warranted, provided that it is employed in line with 

a previously established physiological or performance construct. 

In contrast, topical application takes place prior to the exercise bout, typically in a single 

exposure (Table 10.1). Repeated topical applications have taken place (Barwood, 

Kupusarevic and Goodall, 2018), but the potential impracticality of implementing such a 
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strategy during competition was acknowledged by the authors (Barwood, Kupusarevic and 

Goodall, 2018). Continuous applications through a menthol-soaked garment may present 

a sensory overload of sorts, whereby an athlete is either desensitised to the menthol 

stimulus due to saturation of TRPM8 receptors, or irritation and pain occur.  

When the timings of topical and oral application of menthol mouth swilling are presented 

collectively, it may be the presentation of a novel TRPM8 stimulus that proves ergogenic, 

as opposed to menthol having a directly ergogenic effect. This suggests that menthol is 

disruptive as opposed to directly ergogenic, but can still be effective in enhancing 

performance, especially when timed appropriately relative to fatigue. A randomised 

investigation into different menthol ‘feeding strategies’ may in part confirm this notion. 

However, the number of trials required to explore all possibilities would most likely be 

impractical. Figure 10.5 below depicts some intervals that researchers may wish to 

consider as a starting point, but is not exhaustive (58 possible trial combinations in total). 

A grid such as this may be useful for either future research design, or strategizing the 

implementation of menthol containing strategies during supported competitions.  

 

Figure 10-5 Schematic representing a variety of time points for menthol mouth swill administration (green 

cup) during a 40km cycling time trial. Example A represents a starting dose, much like topical literature. B 

represents a half way dose; C a 75% timing, similar to that of Jeffries et al., (2018). D denotes a 1/3 and 2/3 

strategy. E is a start, third and two thirds dose (per 15km completed) and F is similar to E, but with a delayed 

start interval.
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Table 10-1 Research designs and the frequency and number of exposures of menthol employed in oral and topical applications of menthol, to date. Please note (Botonis et al., 2016) is not included as the 

exercise portion of the trial preceded menthol application; (Akehi and Long, 2013) and (Topp, Ledford and Jacks, 2013) were excluded due to the passive nature of the exercise and menthol exposure, with 

(Topp et al., 2011) focusing upon strength outcomes and so sitting outside of the scope of this synthesis. Abbreviations: CWI: Cold Water Immersion; TTE: Time to Exhaustion; TT: Time Trial; N: number 

of menthol applications. Definition: Continuous is used to describe a timing that takes place for the entire exercise bout, due to menthol being applied to a garment or directly to the individual’s skin for the 

entirety of the exercise bout. 

Oral Application      

Design Author Exercise Modality Menthol % Timing N 

Intermittent Gibson et al., (2018) Cycling 0.01% Every 10 min i.e. fifth 

sprint 

4 

Time to Exhaustion Flood et al., (2017) Cycling 0.01% 10 min intervals Participant dependent 

 Jeffries et al., (2018) Cycling 0.01% 85% TTE 1 

 Mündel & Jones (2010) Cycling 0.01% 10 min intervals Participant dependent 

Time Trial Riera et al., (2014) Cycling 0.01% Every 7.5km during TT 5 

 Riera et al., (2016) Cycling 0.025% Pre, Post Warm up; 

every 5km during TT 

6 

 Stevens et al., (2016) Running 0.01% Every 5 min during 

preload; every km 

during TT 

8 

 Stevens et al., (2017) Running 0.01% Every km during TT 5 

 Tran Trong et al., 

(2015) 

Simulated Triathlon 0.025% During run block (5 x 

4km cycling + 1km run) 

5 

      



 197 

Topical Application 

Design Author Exercise Modality Menthol 

concentration 

Frequency of 

application 

N 

Fixed Duration Bright et al., (2018) Cycling 4% Every 20 min during 

exercise 

5 (maximum) 

 Gillis et al., (2010) Cycling 0.05% or 0.2% Pre-exercise 1 

 Gillis et al., (2015) Cycling 0.05% or 0.2% Pre-exercise 1 

 Gillis et al., (2016) Stepping 0.2% Continuous 1 

 Rinaldi et al., (2018) Cycling 0.1% In between bout CWI 1 

Fixed Temperature Kounalakis et al., 

(2010) 

Cycling 4.6% Continuous 1 

Intermittent Gillis et al., (2018) Sprints 4.0% Post exercise + 2 x day-1 

for five days 

11 (total) 

Time to Exhaustion Barwood et al., (2018) Cycling 0.20% At 20 min & 40 min 2 

Time Trial Barwood et al., (2012) Cycling 0.05% Continuous 1 

 Barwood et al., (2014) Running 0.20% Continuous 1 
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10.3 Conclusion 

The work presented in this thesis documented the development and application of a 

mentholated solution in trained middle and long distance runners, at intensities 

representative of training and competition. Firstly, a thorough analysis of the effects of 

internal and external cooling methodologies applied before and during time trial 

performance and an accompanying examination of menthol application during and 

following exercise were conducted. These reviews demonstrated that internal application 

of cooling strategies across the exercise bout, and internal application of menthol are most 

likely to improve performance, respectively. Consequently, a novel menthol solution was 

created, refined and applied at rest and at progressive and fixed exercise intensities. At 

rest, alterations in thermal perceptual sensations consistent with literature were observed, 

especially providing empirical support to menthol’s ability to alter thirst. During 

progressive exercise, responses showed a great deal of variability, possibly due to inter-

individual differences in relative exercise intensities, especially in hot conditions. These 

individual responses to menthol swilling were also apparent during fixed intensity 

exercise, yet menthol induced moderate improvements in thermal comfort and thirst. 

Despite limited ergogenic effects noted in experimental studies, most likely due to 

athletes’ training status, when asked to reflect upon their experiences, participants 

reflected positively upon their perceptions of menthol mouth swilling and expressed a 

desire for the strategy to be available outside of the confines of the laboratory.  
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CHAPTER 12 : APPENDICES 

 

Appendix 1: CR100 scale of perceived exertion  

 

(E. Borg and G. Borg 2002)  

Original Scale
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(E. Borg and G. Borg, 2002)  

Extremely Hard
“Maximal”

Very Hard

Hard

Somewhat Hard

Moderate

Easy

“Minimal”

Very Easy

Idiomatic English Verbal Descriptors
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Appendix 2: Thermal Sensation and Comfort Scales  

 

Very Hot 4 

Hot 3 

Warm 2 

Slightly Warm 1 

Neutral 0 

Slightly Cool -1 

Cool -2 

Cold -3 

Very cold -4 

 

Please describe how hot you feel now 

 

(Zhang et al., 2004) 
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Very Comfortable 4 

 3 

Comfortable 2 

 1 

Just comfortable +0 

Just uncomfortable -0 

  -1 

Uncomfortable -2 

 -3 

Very Uncomfortable -4 

 

Please describe how comfortable you feel now 

(Zhang et al., 2004) 
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Appendix 3: Thirst Scale  

 

Severely Thirsty 9 

 8 

 7 

 6 

 5 

 4 

 3 

 2 

 1 

Not at all thirsty 0 

 

(Engell et al., 1987) 
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