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Abstract: To assess water quality (WQ) online for assuring the safety of drinking water, a novel 
early warning system integrating a high-frequency monitoring system (HFMS) and data quality 
control (QC) was developed at Lake Qiandao. The HFMS was designed for monitoring water 
quality, nutrient inputs by main tributaries, water currents and meteorology at different sites at 
Lake Qiandao. The EWS focused on data availability, a QC method, a statistical analysis method 
and data applications instead of technological aspects for sondes, wireless data transfer and 
interface software development. QC was implemented before use to delete the abnormal values of 
outliers, to detect change points, to analyse the change trend, to interpolate discrete missing 
measurements, and find continuous missing or wrong observations caused by technical problems 
with the sonde. For demonstrating advantages and data availability, surface and profiling 
measurements at two sites were plotted. The plots show obvious seasonal and diel variations, 
demonstrating the success of integration of the system with advanced automated technology and 
good QC. This successfully developed system is now not only giving early warning signals, but also 
providing critical WQ information for the security of drinking water diverted to Hangzhou city 
through a tunnel of 110 km length. The automatic monitoring data with QC is also being used to 
produce initial conditions for WQ prediction based on a three dimensional hydrodynamic-
ecosystem model. 

Keywords: early warning system; high-frequency monitoring; data quality control; water quality; 
Lake Qiandao 
 

1. Introduction 
Lake eutrophication is a long-term global problem caused by excess nutrient inputs 

[1], and exacerbated by long water residence times that delay WQ responses to 
management actions. It is a common problem in the lakes located at the middle and lower 
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catchment of the Yangtze River even in the “good WQ” lakes classified by the Ministry of 
Ecology and Environment of the People’s Republic of China (e.g., Lake Qiandao). 
Impairments associated with eutrophication include poor water clarity, harmful algal 
blooms (HABs) [2–4], and the loss of biodiversity, which affect drinking water supplies 
and the recreational use of lakes. Some impairments are highly dynamic (e.g., HABs, loss 
of dissolved oxygen, etc.), which has resulted in the rapid proliferation of EWS for 
monitoring key variables that can cause rapid changes in the water quality of coastal water 
[5] and freshwater systems [6–10]. 

An EWS is an integrated system consisting of in situ autonomous sensors for 
continuous rapid monitoring. The measured data are analysed and interpreted for the 
purpose of forecasting changes in water quality by the system. It provides a fast and 
accurate way to distinguish abnormal/abrupt variations in WQ due to biochemical and 
physical interactions over short time scales. EWS requires the fast detection of 
abnormalities in WQ parameters, which calls for high-frequency real-time monitoring 
technologies, wireless communication and appropriate data storage and analysis. A new 
generation of online monitoring tools based on sensor sonde technology and satellite-
based remote sensoring (RS) has emerged in recent years [11–16]. However, the effective 
implementation of these tools has not been fully realised due to their limitations relating 
to meeting practical utility needs, high costs, unsatisfied reliability, hardware 
maintenance demands, and cumbersome data management and analysis approaches, 
with respect to practical operations. 

Conventional sample collection and laboratory-based methods are too slow to 
achieve operational response and temporal–spatial continuity. There is a clear and 
increasing need to rapidly detect WQ parameters to ensure an appropriate and timely 
response to instances of accidental or deliberate contamination [13]. For the past two 
decades, Wireless Sensor Networks (WSNs) technology has been applied increasingly to 
environmental monitoring for providing high-frequency scientific data. These high-tech 
smart devices have offered a vital approach to environmental monitoring and have 
monitored some lesser-studied fundamental processes, due to their inaccessibility [12]. 
Generally, the sensor nodes acquire data autonomously, process them locally, and transfer 
the information to a base station with an internet connection [17]. 

WSN technology integrated with floating buoys has been widely used to acquire 
high-frequency WQ data for lakes in the world. Due to severe environmental problems, 
the Chinese great lakes, which were or are currently supplying drinking water, have been 
the focus of many efforts to build dense buoy monitoring networks. For example, on Lake 
Taihu (Jiangsu Province, surface area 2338 km2, mean water depth 1.9 m), 18 WSN buoy 
stations are operated by the Chinese Academy of Science, 21 stations by the Jiangsu 
Environmental Monitoring Station [18], and one each by the Suzhou Meteorological 
Bureau and Nanjing Normal University. At Lake Dianchi (Yunnan Province, surface area 
~300 km2), there are 30 monitoring buoy stations (MBSs) [19]. Lake Taihu and Lake 
Dianchi are both key lakes which have been invested in tremendously by the Chinese 
central government for ecological restoration over the past two decades. At Lake Qiandao, 
which is a drinking water supply reservoir with an area of 580 km2 [20], there are four 
buoy profilers with a meteorological station, 10 MBSs for surface WQ detection with a 
meteorological station, 13 MBSs for inflow river WQ detection, and four for both surface 
WQ detection and current measurements by an Acoustic Doppler Current Profiler 
(ADCP). 

Key issues that need to be addressed for a EWS in order to assure the accuracy and 
precision of measurements, are data quality control (QC) and quality assurance (QA). QC 
and QA are fundamental for decision making based on reliable data analysis. For a specific 
water quality parameter, QC generally involves a number of internal consistency tests, a 
threshold test, a step change point and trend detections for finding potential outliers at a 
particular station [21]. Measured data at a given site may also be compared with 
measurements from surrounding sites for an accuracy assessment. An effective QC and 
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QA system is critical to the success of any environmental project, which has been 
successfully applied to the fields of climatology, oceanography and other geosciences. 
However, there has been limited application to developing an EWS with real-time high-
frequency monitoring. Therefore, the aims of this study were to introduce a 
comprehensive EWS. developed for Lake Qiandao, and the corresponding QC method for 
real-time high-frequency monitoring data. 

2. Methodology 
2.1. Study Area 

Built in 1959, Lake Qiandao is located at Chun’an County, which is at the west of 
Zhejiang Province, China (29°22′–9°50′N, 118°34′–119°15′E, Figure 1) [22]. It is one of the 
largest reservoirs in China with a surface water area of 573 km2 and a water capacity of 
178.4 × 108 m3 , when the water level is 108 m [23]. The mean water depth is 34 m and the 
maximum depth is 100 m. It is used to supply drinking water for the 450,000 people in 
Chun’an County. Now, it is also providing drinking water for five million people in 
Hangzhou City, through a tunnel with a length of ~110 km. There are 34 inflow tributaries 
around the lake. The largest one (Xinan River, Figure 1) is from the northwest, carrying 
51.4% of the total inflow to the lake from all sources, not including rainfall and ground 
water. It carries 34.3% of the total phosphorus (TP) loading and 63.7% of the total nitrogen 
(TN) loading [19]. The multi-year average inflow and outflow are 103.44 × 108 m3 and 97.45 
× 108 m3, respectively [23], with a residence time of ~668 days. 

 
Figure 1. Monitoring sites at Lake Qiandao and its location within China. 
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2.2. Monitoring Stations 
The HFMS at Lake Qiandao includes thirteen river stations; fourteen buoy stations—

including ten buoys measuring the surface WQ (Buoy_surface, model EMM700, YSI 
Incorporated, Yellow Springs, USA); four ‘profiler’ buoys (Buoy_profiler, model 
EMM2500, Yellow Springs, USA); four hydrological stations (Hydro_station)—these were 
deployed at the three main tributaries and the only river outflow and measure water 
current speed; and four flux stations (Flux_station, model Tenghai HZF3, Tenghai Science 
& Technology Ltd., Hangzhou, China), located alongside the hydrological stations, 
measuring WQ parameters. There are also thirteen river stations (River_station, model 
EMM700, YSI Incorporated, Yellow Springs, USA) measuring WQ, deployed at the main 
inflow tributaries. Meteorological sensors (Met_station) are deployed at the top of each 
buoy station, except for one site (Figure 1). The Buoy_profilers were deployed at sites 1–
4. The profiling information at site 3 is representative of the lake because it is at the 
centroid, while site 4 is the deepest monitoring point, which is located at the biggest 
outflow channel. Sites 5 and 6 with Buoy_surface are near the middle, capturing surface 
WQ variation. 

2.3. Sensor Information and Alert Range 
Table 1 shows all the sensor metadata. The alert range for a specific sensor, in the 

seventh column of Table 1, was decided by analysing historical data manually, or by using 
the sonde measurements. The alert thresholds are equal to the corresponding reasonable 
“minimum-maximum-range” (MMR) of each sonde. When the measured value is out of 
the alert range, an alert report will be recorded and the EWS can find the report by 
searching alert report once an hour. Once alert information for a specific sonde is found, 
a message will be sent to the EWS manager’s cellphone. The integrated sonders with a 
metal protective cage move up and down through the water column at a constant speed 
The average return times for sonders moving at site 1, site 2, site 3 and site 4, are 55 min 
through a water column of 65 m, 45 min (water column 40 m), 50 min (water column 46 
m), and 30 min (water column 16 m), respectively. The measurement values are recorded 
every minute at all the four sites. All the buoy systems are solar-powered and the data are 
transferred to a computer server at the Chunan Branch of Hangzhou Ecology and 
Environment Bureau by 4G wireless telemetry. The whole monitoring system is being 
maintained by Hangzhou Tenghai Science and Technology Limited, with the sondes 
cleaned to wipe bio-fouling once a month and calibrated once every three months for data 
assurance. The power supply system with a solar panel and wireless data transfer are also 
regularly checked and maintained by this company. 

  



Water 2022, 14, 602 5 of 13 
 

 

Table 1. Sensor metadata for all monitoring buoys at Lake Qiandao. 

Buoy Type 
Number 
of Buoys 

Measured 
Parameter Unit 

Sensor 
Model 

Measurement 
Range Alert Range 

Monitoring  
Frequency 

Buoy_ 
surface 

10 
 

WT °C 

YSI 
EXO2 

−5–+50 9–35 

30 min 

PH  0–14 6–9 
ORP mV −999–+999 −30–+500 

COND mS cm−1 0–200 80–170 
DO_con mg L−1 0–50 4–13 

Buoy_ 
profiler 4 

DO_sat % 0–500 39–170 
TURB NTU 0–4000 0–43 
CHLA µg L−1 0–400 0–25 

PC µg L−1 0–100 0–7 
FDOM QSE 0–300 0–7 

River_ 
station 

(EMM700) 
 

13 

WT °C 
YSI 

EXO2 

−5–+50  

2 h COND µS cm−1 0–200  
TURB NTU 0–4000  
FDOM QSE 0–300  

Met_ 
station 

13 

RH % 

VAISALA 
WXT520 

0–100 35–90 

30 min 

BP hpa 600–1100 970–1030 
Wind_spd m s−1 0–60 0–13 
Wind_dir °C 0–360 0–360 

TEMP °C −52–+60 1–33 
RAIN mm 0–200 mm h−1 0–162 mm day−1 

Flux_ 
station 4 

TN mg L−1 

TriOS  
OPUS 

 0.4–1.5 

1 h 
TP mg L−1  0–0.03 

COD mg L−1 0–500 4–11 
NO₃-N mg L−1 0–100 0–0.08 
TOC mg L⁻¹ 0–500  

Hydro_ 
Station 4 Current Speed m s−1 ADCP TRDI  

WHR600k 0–5 0–1 30 min 

Abbreviations: water temperature (WT), oxidation reduction potential (ORP), electrical 
conductivity (COND), dissolved oxygen concentration (DO_con), dissolved oxygen saturation 
(DO_sat), turbidity (TURB), chlorophyll a (CHLA), phycocyanin (a pigment specific to 
cyanobacteria, PC), fluorescent dissolved organic matter (FDOM), total nitrogen (TN), total 
phosphorus (TP), chemical oxygen demand (COD), nitrate (NO3−N), total organic carbon (TOC), 
relative humidity (RH), air pressure (BP), wind speed (Wind_spd), wind direction (Wind_dir) and 
air temperature (TEMP). 

2.4. Data Quality Control 
The monitoring stations produce large volumes of data, requiring specialised tools 

to facilitate quality control and to ensure that data are fit-for-purpose. We developed 
bespoke software in Fortran, employing two principle methods of quality control. Firstly, 
an MMR was adopted whereby the minimum and maximum values of the raw data 
measured by each sensor were specified, by assessing the range of previous observations 
and defining a ‘reasonable range’ (larger than or equal to the alert range at Table 1) for 
each variable based on a large volume of historical measurements from the lake area and 
inflows/outflows. The lowest value from both historical observations was adopted as the 
minimum value for MMR, with the maximum value defined with a similar method. Table 
2 shows all the maximum (Max)/minimum (Min)/average (Avg) values for WQ 
measurements including WT, pH, DO, permanganate index (PI), chemical oxygen 
demand (COD), five-day biochemical oxygen demand (BOD5), ammonia (NH4-N), TP, 
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TN, CHLA and Secchi depth (SD). Unfortunately, only WT, pH and DO were observed 
by the monitoring buoys. Subsequently, data outside of the specified range for each 
variable were quarantined with a unique flag number (e.g., ‘8888’) and will be further 
investigated. 

Table 2. Statistical value of measured water quality parameters at the four sites of Lake Qiandao 
from April 2001 to May 2021. 

Site 
Number of 

Samples  
Statistical 

Value 
WT 
(°C) 

pH 
DO 

(mg L−1) 
PI 

(mg L−1) 
COD  

(mg L−1) 
BOD5 

(mg L−1) 
NH4-N 
(mg L−1) 

TP 
(mg L−1) 

TN 
(mg L−1) 

CHLA 
(µg L−1) 

SD 
(m) 

Site 1 195 

Max 32.8 9.1 14.3 3.53 17.0 3.50 0.51 0.173 2.47 72 6.0 

Min 9.0 6.4 4.9 1.23 5.0 0.34 0.01 0.002 0.59 0.6 0.1 

Avg 20.5 7.7 8.7 1.96 7.0 1.05 0.08 0.029 1.24 9.5 2.39 

Site 2 184 

Max 34.3 8.8 14.9 2.67 14.0 2.70 0.18 0.050 1.63 47.0 7.8 

Min 9.3 6.7 6.7 0.78 1.1 0.28 0.01 0.002 0.33 0 0.8 

Avg 20.9 7.8 9.3 1.54 5.1 1.04 0.03 0.013 1.04 7.0 3.81 

Site 3 230 

Max 33.5 8.8 11.8 2.00 12.0 1.80 0.09 0.027 1.45 20.2 11.0 

Min 9.6 6.7 6.4 0.71 0.7 0.22 0.01 0.002 0.42 0.3 1.7 

Avg 20.7 7.8 8.9 1.37 4.1 0.85 0.02 0.009 0.84 4.0 5.48 

Site 4 230 

Max 32.9 8.5 11.6 2.13 12.0 1.60 0.03 0.025 1.48 15.6 11.0 

Min 6.7 6.6 6.0 0.61 0.0 0.19 0.01 0.002 0.40 0.0 2.4 

Avg 20.7 7.7 8.6 1.27 4.0 0.80 0.01 0.007 0.82 3.3 6.02 

The second approach is an “abnormal” value detection method, as follows: 
(1) Suspected abnormal value judgement. For a target value, not including the first 

and last ones (e.g., ‘xi’ in Equations (1)–(3)), if it is either larger or smaller than its adjacent 
values, then the target value will be regarded as a suspected abnormal value and flagged. 𝑓ଵ = 𝑥௜ − 𝑥௜ିଵ (1)𝑓2 = 𝑥𝑖+1 − 𝑥𝑖 (2)𝑓𝑓 = 𝑓ଵ × 𝑓ଶ (3)

where xi (I = 2, 3, 4, … n − 1) represents the time series of buoy measurements, excluding 
the first and last values. So if ff < 0, the measurement at the ith time will be regarded as a 
suspected abnormal value. 

(2) Abnormal value confirmation. We calculate the average value 𝑥̅ of raw data after 
MMR control, the anomaly |𝑥௠௔௫ − 𝑥̅| between the maximum value 𝑥௠௔௫  and 𝑥̅, and 
the anomaly |𝑥௠௜௡ − 𝑥̅|  between the minimum value 𝑥௠௜௡  and 𝑥̅ . The larger value |𝑥 − 𝑥̅| between |𝑥௠௔௫ − 𝑥̅| and |𝑥௠௜௡ − 𝑥̅| will be chosen to compare with the absolute 
value |𝑓𝑓| of ff. If |𝑓𝑓| is larger than, or equal to, |𝑥 − 𝑥̅|ଶ, then the measurement at the 
ith time will be confirmed as an abnormal value. 

2.5. Change Point and Trend Detections 
The Pettitt test was used to automatically detect change points in the data series once 

a week. Pettitt’s test is a nonparametric test to detect a single change point in a time series 
with continuous data. Its calculation procedures can be found in detail in [24]. The 
identified change points were then compared to the minimum and maximum values for 
each sensor. If their values are all in MMR, the validity of change point values will be 
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confirmed. Otherwise the values will be removed from the time series or marked for 
further check. An exploratory analysis was also carried out to detect the trend of hourly 
and daily data for all the parameters using the Mann-Kendall method once a week. If the 
serial data kept increasing or decreasing for more than one week, its validity would be 
manually and carefully investigated. 

2.6. Data Availability, Daily and Hourly Data Calculation 
Most of the buoy monitoring datasets at the lake area (Buoy_surface, Buoy_profiler, 

Met_station) commenced in September 2015. The River_station data collection began in 
August 2016 and the Flux_station and Hydro_station data collection began in April 2017. 
A software developed by the authors is used to analyse and summarise the high-
frequency data, including the calculation of daily and hourly values, based on quality-
controlled raw data. Small data gaps without measurements (≤days) are interpolated by 
the software and the large data gaps are arbitrarily set up with a unique flag number (e.g., 
‘8888’), which will be not included for calculating daily and hourly values. 

3. Results 
3.1. Buoy Photographs 

Figure 2 shows photographs of the Buoy_surface system at site 5 (Figure 2A), located 
at the mouth of largest tributary (Xinan River, Figure 1), and the Buoy_profiler system at 
site 4 (Figure 2B), located at the deepest area in front of the dam for the power station 
(Figure 1), which is the only outflow. The web interface, which dynamically updates all 
station data from the database, allows the user to make requests for time periods of 
interest, review data from specific sites, visualise data as a function of time, and perform 
simple statistical analyses of the real-time data. All historical data from the monitoring 
system can be downloaded through the web interface by authorised users. 

 
Figure 2. Pictures of (A) the Buoy_surface system at site 5, (B) the Buoy_profiler at site 4.  

3.2. Surface Measurements 
The measurements from site 5 are presented here as an example, and show the daily 

and hourly variations in surface WQ measured by the buoy probes. Figure 3A shows the 
time series of daily surface WT from 30 September 2015 to 1 August 2020, and daily 
surface DO, CHLA and PC from 27 January 2016 to 1 August 2020. The values of 
maximum (Max), minimum (min), average and standard deviation (Stdev) for WT, DO, 
CHLA and PC at site 5 are given in Table 3. All the maximum values for WT, CHLA and PC 
occurred in summer, but their lowest observations occurred in winter (PC) or spring (WT, 
DO and CHLA). CHLA and PC showed higher variability over time than those of WT and 
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DO during the study period, based on their statistical Stdevs compared to their average 
values. 

Table 3. Statistical summaries of surface WT, DO, CHLA and PC measured by monitoring buoys at 
site 5 and site 6. 

Site Parameter Max Min Avg. Stdev n 
  Value Date Value Date    

Site 5 

WT (°C) 32.4 30 July 2017 10.3 1 March 2019 20.2 6.3 1617 
DO (mg L−1) 13.9 18 April 2020 1.7 3 April 2016 9.3 1.6 1546 

CHLA (µg L−1) 24.3 17 June 2019 0.1 9 April 2016 3.6 3.0 1530 
PC (µg L−1) 2.15 23 July 2017 0.1 10 February 2016 0.5 0.4 1318 

 
Figure 3. Time serials of (A) daily and (B) hourly WT (black dots, ℃), DO (orange diamonds, mg 
L−1), CHLA (green dots, µg L−1) and PC (blue diamonds, µg L−1) at site 5. Left Y-axes is for WT, DO 
and CHLA, and right Y-axes is for PC. X-axes is for date in format of year-month-day. 
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To show diel variation, hourly data of WT, DO, CHLA and PC at site 5 for the period 
of 00:00 a.m. 3 July 2019–11:00 p.m. 16 July 2019, without data gaps, are presented as an 
example in Figure 3B. CHLA and PC show obvious diel variation with higher values in 
daytime relative to night time, while WT and DO keep more constant than CHLA and PC, 
showing no diel variation. The Pearson correlation coefficient between WT and DO is 0.8 
(n = 336), suggesting that surface DO was mainly controlled by WT for the lake. 

3.3. Profiling Measurements 
Profiles of WT, DO, CHLA and PC at site 4 (deepest area) for 1 January 2016–10 July 

2020 are shown in Figure 4. The maximum measurement depth was 65 m at this site. WT 
(Figure 4A) profiles show a monomictic pattern of mixing with thermal stratification in 
summer and mixing in winter, although some periods and layers lacked measurements. 
The TDs were 9.2 m, 9.4 m, 12.1 m and 7.8 m in the summer (July–September) of 2016, 
2017 and 2018 and July of 2019 (data not available in August and September). The TD in 
2018 were greater than other years, which suggests that the stratification in the summer 
of 2018 was more intensive than in 2016, 2017 and 2019. Correspondingly, bottom hypoxia 
events were observed during the stratification of all years. Average bottom DO values 
(Figure 4B) during stratification were 7.0 mg L−1, 7.7 mg L−1, 8.2 mg L−1 and 7.7 mg L−1 in 
2016, 2017, 2018 and 2019, respectively. The lowest DO values were 1.0 mg L−1, 2.0 mg L−1, 
1.6 mg L−1 and 2.9 mg L−1, observed on 4 April 2016, 9 December 2017, 1 January 2018 and 
13 January 2019, respectively. 
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Figure 4. Daily (A)WT, (B) DO, (C) CHLA and (D) PC profiles at site 4 for 1 January 2016–10 July 
2020. Y-axes for (A–D) represent water depth (m) and X-axes represent years from 2016 to 2020. 
White areas denote lack of measurements. 

CHLA (Figure 4C) followed a similar pattern to WT, with higher values in summer 
than in winter, suggesting that the biomass of phytoplankton is mainly regulated by water 
temperature instead of nutrients. The phytoplankton was mostly distributed in the upper 
15 m except for late 2018 and early 2019, when phytoplankton could still be found at a 
depth of 30 m. PC values (Figure 4D) were much smaller than CHLA at the same depth. 
It didn’t have distinct seasonal variation, but was obviously stratified in the summer of 
2018 with a higher concentration in the lower layer than the upper layer. 

3.4. Real-Time Early Warning Information 
The Ministry of Ecology and Environment of China (MEEC) issued state standards 

for surface water quality in 2002 [25] in order to better manage surface water in China. 
Lake Qiandao was required to meet Grade I (Table 4, the requirements for heavy metal 
were not shown in the table) since it provides drinking water for approximately half a 
million people in Chun’an County (located to the northeast of lake), and a total of 10 
million people in both Hangzhou City and Jiaxing City, with water diverted through a 
tunnel of more than 110 km in length. DO and pH are the only two parameters which 
were measured by wireless sonde, deployed with monitoring buoys at the lake. The 
statistical analysis results for DO and pH are shown in Table 5. There were totally 275 and 
130 samples of pH and DO out of their MMRs at site 5, accounting for 11.0% and 8.0% of 
all the valid samples, respectively. The percentages of pH (21.5%) and DO (11.3%) at site 
6 were more than those at site 5. The observed maximum/minimum/average values of pH 
at site 5 and site 6 were 9.9/9.002/9.22 and 12.2/9.0002/9.62, respectively. Thus, the 
maximum pH at site 6 is much greater than that at site 5, showing that pH was more 
variable at site 6 than at site 5. However, DO followed a reverse pattern, with more varied 
values at site 5 compared to site 6. Its lowest value was as low as 1.74 mg L−1, observed on 
3 April 2016. 

Table 4. Threshold of WQ parameters required for Lake Qiandao. 

Parameter pH DO 
(mg L−1) 

PI 
(mg L−1) 

COD 
(mg L−1) 

BOD5 
(mg L−1) 

NH4-N 
(mg L−1) 

TP 
(mg L−1) 

TN 
(mg L−1) 

Threshold for 
Grade I 6–9 ≥7.5 ≤2 ≤15 ≤3 ≤0.15 ≤0.01 ≤0.2 

Table 5. Statistical analysis results of DO and pH for early warning at site 5 and site 6. 

Statistical Results 
Site 5 Site 6 

pH DO pH DO 
Number of all available data 1573 1618 1128 1128 

Number of EWS data 275 130 242 128 
Max 9.9 7.5 12.2 7.5 
Min 9.002 1.74 9.0002 6.2 
Avg. 9.22 6.92 9.62 6.99 

4. Discussion 
The EWS is now being used for giving real-time early warning signals by judging if 

the measurements of each sensor are out of the corresponding MMR and meet the 
required WQ grade. Unfortunately, DO and pH are the only two parameters which were 
directly measured by the buoy sensor and which can be used for the early warning of WQ 
at this lake. Therefore, it should be considered seriously whether sensors measuring 
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nutrients (e.g., TN, TP, NH4-N, COD and PI) should be added to the buoys, or whether a 
model (e.g., AEM3D) simulating these nutrients based on high-frequency monitoring 
data, needs to be developed for providing more satisfactory early warning signals. 

The system is also providing data for horizontal interpolation, to produce an initial 
condition for AEM3D predicting HABs and WQ at a time scale of seven days. For a WQ 
and HAB prediction system, initial and boundary conditions are very important to 
improve prediction accuracy. The initial conditions include horizontal and vertical WQ 
distribution within the waterbody (e.g., TN, TP and CHLA concentrations at each grid 
location). A huge challenge with initial conditions derives from the limited number of 
monitoring buoys collecting high-frequency WQ data, due to economic considerations, 
which leads to an inaccurate spatial distribution of WQ (e.g., high spatial patchiness of 
cyanobacterial bloom). However, many advanced interpolation methods are now 
available to address this issue. Inaccurate spatial WQ distribution in model initialisation 
can lead to inaccurate WQ prediction at each grid location, and thus unconvincing algal 
aggregation caused by winds. However, temporal and spatial difficulties prevent 
conventional methods for water sampling and laboratory analysis to meet the 
requirements for producing model initial conditions. A comprehensive approach is 
required, integrating high-frequency buoy monitoring data, laboratory data, satellite 
images and other available resources to provide a satisfactory spatial WQ concentration 
for the initialization of predictive simulation systems. 

WQ sonde (multi-sensor probes) measurements can efficiently provide data 
wirelessly at a high temporal resolution, but potential problems could include data 
distortion due to sensor faults, or data gaps because of failed data storage and/or transfer. 
Therefore, data QC procedures are necessary before using the sensor measurements. The 
first step for QC is typically to detect missing series and estimate missing values by relying 
on neighbouring observations, then to detect unreasonable values out of range between 
the upper and the lower limits for each parameter, ideally guided by experience for a 
specific water body and measurement type. Unreasonable values can be removed and 
substituted with interpolated values. If many successive measurements from the same 
sensor are of the same exact value, they should usually also be removed and interpolated 
with neighbouring values, or excluded from data analysis. The final step is to detect 
outliers (incorrect or out-of-range) measurements, which can be removed or assumed to 
be missing [26]. Outliers are typically those observations which represent abrupt increases 
or decreases compared to the neighbouring values. There are many methods [26–28] and 
pieces of software [29] available for data QC. In this paper, we adopted the outlier 
detection method for finding anomalous values, which were removed and generally 
replaced with interpolated values. The detections of change points and trends will further 
help to find abnormal values or sonde problems. In our system, interpolation was not 
implemented to reproduce actual missing values due to the high potential for erroneous 
measurement generation when interpolating over longer time periods. Therefore, 
interpolation methods or software need to be integrated into this system in order to 
produce data without measurement. 

The whole buoy monitoring system was originally designed to provide essential WQ 
information, in order to meet Grade I at the required sites. Therefore, Buoy_profilers were 
deployed at site 1, site 3 and site 4, and Buoy_surface was deployed at site 5. However, 
the buoys can only monitor WT, DO, pH, CHLA, PC and TURB. It is very difficult and 
expensive to directly and accurately measure TN, TP, NH4-N, PI, COD and BOD5 at a  
high frequency and in near-real-time [30]. An optional solution in this early warning 
system, is to calculate these parameters based on their regressed relations with sonde-
measured values. The calculated values from regressive equations can then provide vital 
WQ information at different zones of the lake, feeding the AEM3D 
(http://www.hydronumerics.com.au, accessed on 15 January 2022) model for WQ 
prediction. 
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The collected data may assist water environmental managers in identifying and 
predicting the impacts of climatic extreme events [31]. For example, at Lake Qiandao, 
rainstorms with high rainfall typically result in a large inflow of water and nutrient 
loading, including N, P, and organic/inorganic matters, leading to an abrupt increase in 
water level and a significant increase of regional N and P concentrations [22]. This 
remarkably alters the spectral absorption properties of chromophoric dissolved organic 
matter (CDOM) and particles at the northwestern, southwestern and northeastern areas 
[32]. HFMS can also provide a useful basis for theory and model developments, 
improving our understanding of lake (reservoir) responses to perturbations caused by 
human activities and climate change at different time scales (e.g., sub-hourly, hourly, 
daily, monthly, seasonally, annually and every decade). 

Although HFMS has a wide range of applications, it is now still hampered by several 
factors. For example, we have a limited choice of water quality sensors that are robust, 
economic and low-maintenance. The accuracy of the sondes measuring chemical 
parameters (i.e., phosphorus, ammonium, ammonia and nitrite) and biological 
parameters (i.e., bacterial enumeration, cyanobacteria, biota and cyanotoxins) still needs 
to improve, although the fast spread of HFMS is encouraging sensor developers to 
improve technology as quickly as they can. For giving better early warning signals and 
real-time WQ assessment, in the future, it will be necessary to add sondes measuring 
chemical and biological parameters to the current HFMS. 
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