
219

Supplementary proceedings

Where are Mifrenz?

Dr Tim D. Hunt
Waikato Institute of Technology (Wintec)

Tristram Street
Private Bag 3036
Hamilton 2020
New Zealand

tim.hunt@wintec.ac.nz

Abstract
This paper describes the further development of an email
application for children, called Mifrenz, in particular the
implementation of the ability to use the application from
more than one physical location. During evaluation of the
previous version of the software, it was discovered that
many children wish to access their email from multiple
physical locations. From this problem the following
objectives for this work were identified: 1) Provide access
to sent and received email from multiple locations, 2)
Provide access to persistent data (contacts and jokes) and
3) Keep the development time to a minimum. During the
design stage the use of the IMAP technology was
identified as the only practical solution for sharing
messages. The design stage also identified IMAP and
Google Docs as two methods for solving the storage of
persistent data problem. Although both of these designs
were shown to work during the development stage, IMAP
was eventually selected as the most appropriate
technology for storing persistent data. The Design
Science Research Process (Peffers, 2006) is used as a
framework in describing this work. The steps of this
process framework are: 1) Problem identification and
motivation, 2) Objectives of a solution, 3) Design and
development, 4) Demonstration, 5) Evaluation and 6)
Communication.
Keywords: Mifrenz, Email, Children, IMAP.

1 Introduction
Email has become a common means of communication
among adults. The rise in popularity of email has also
been accompanied by a rise in the amount of unsolicited
email, known as SPAM. Although SPAM is normally a
mere nuisance to adults, it is a major concern for parents
when their children wish to use email unsupervised. To
alleviate the problem of SPAM, Mifrenz 0.1 (Hunt, 2007)
was designed and developed to allow young children to
safely use email with a minimum of adult supervision.

This Supplementary Proceedings paper appeared at
the 21st Annual Conference of the National Advisory
Committee on Computing Qualif ications (NACCQ
2008), Auckland, New Zealand. Samuel Mann and
Mike Lopez (Eds). Reproduction for academic, not-
for profit purposes permitted provided this text is
included. www.naccq.ac.nz

During end user evaluation of Mifrenz 0.1, it became
clear that the application was not suitable for children
who wished to access their email from two separate
addresses. This paper describes this problem and the
investigation and implementation of a suitable solution.
The paper format follows the Design Science Research
Process framework as proposed by Peffers (2006). This
framework suggests the following 6 steps:

Problem identification and motivation
Objectives of a solution
Design and development
Demonstration
Evaluation
Communication

Although it is suggested that progress is made from one
step to the next, you do not necessary have to start at the
first step, but could enter the framework at any of the first
4 steps. Also the framework is an iterative process in that
you may return to an early step as the particular situation
deems necessary.
This paper describes the implementation of a solution,
based on the IMAP (The IMAP Connection, 2008)
protocol that allows sharing of information across
multiple physical locations. It may be of interest to those
who teach computer program design and would like a
case study on how a design issue was presented and
eventually solved.
The rest of this introduction gives an overview of current
email options for children followed by a brief overview
of Mifrenz 0.1 to place the current work in context.

1.1 Current email options for children
A number of alternative solutions exist for children to use
email and are presented here.

1.1.1 Standard adult software with parent
supervision

The first solution is to allow children to use a standard
email application. A number of scenarios exist, none of
which are deemed very suitable.

The parent allows the child to use their own
email account. They may ‘hover’ close by as
the child writes or reads an email.
A child has their own email address but the
parent closely controls access to when the child
reads the email (by not giving the child the
password).

220 Where are mifrenz.docx

The parent sets up a ‘white list’ and sets an
option to have email from non contacts to be
deleted. The problem with this solution is that
the child may choose to stop using the white
list.

1.1.2 Specific server based email server for
children

Kidmail.net (2007) is an example of a solution that relies
on a dedicated server to provide a web based email
application. This allows a high quality solution as control
of various options can be set at an appropriate level for
the age of the child. Child access to changing these
options is prevented. A drawback of this solution is the
ongoing cost that subscribers are required to pay.

1.1.3 Adult web email with child supervision
Although the popular Hotmail (Microsoft Corporation,
2008) has recently included a means for adults to
supervise a child’s list of contacts the user interface is
still designed for adults and includes potentially
inappropriate adverts.

1.2 Mifrenz 0.1
Available for download from http://mifrenz.com, Mifrenz
0.1 is a PC based application that allows parents to
control the email addresses that their child can send
emails to and receive emails from. Some of the major
features and design decisions of the application are given
here.

1.2.1 Web based or local application?
The objectives of Mifrenz 0.1 were to provide a low cost
email application that would meet the needs of parents,
yet still be attractive and easy for children to use. To
achieve these objectives, it was decided to not attempt to
provide a server based application due to the cost of
providing a reliable 24/7 solution on a low budget.
A basic design of Mifrenz is therefore that it does not rely
on the provision of a web server, and so by default
Mifrenz must be implemented as a desktop application.
The application relies on a third party email server for
message (email) forwarding and receiving. This
arrangement means that the cost of providing a
production standard server is not borne by the cost of the
Mifrenz software.
The literature, MacManus (2007) asks “Which is better,
an offline Web App or an online Desktop App?” and goes
on to offer both sides of the argument. The traditional
advantage of the desktop application is the superior user
interface although the introduction of AJAX enabled web
applications has reduced this advantage. Web based
applications have the advantage of a much easier user
‘installation’ experience; there is none; but they have a
major disadvantage of not being available when no
internet connection exists. MacManus suggests that for
applications that depend on internet connectivity, taking
everything into consideration, Web applications probably
offer a superior solution.

Where does this leave an email application for children,
where a rich user interface experience is required, yet it is
obviously an internet centred activity? The first version
of Mifrenz used the Java Web Start technology that
provides an automatic installation (one click on a web
link) with a resulting desktop application. Unfortunately,
Java Web Start did not suit the situation of an application
being installed by one user and used by another as the
technology did not permit this. Mifrenz 0.1 was
eventually distributed as a Java application wrapped in a
standard .exe file.

1.2.2 Sending and retrieving protocols
Mifrenz 0.1 uses the SMTP protocol for sending
messages and the POP3 protocol to retrieve email
messages from the server.

1.2.3 Contact storage
Contact information (name and email address) is stored in
a file on the disk drive of the local PC being used. Even
before the issue of using multiple computers was raised,
problems were encountered with allowing the parent and
child to both have write access to the contact data (as was
required as either could be logged on to the computer
when contact data needed to be created or updated). The
requirement of storage that both child and parent had
access to was thus already an issue of concern.

1.2.4 SPAM filtering
A major design of Mifrenz is the filtering of messages
from unapproved email addresses. The filtering basically
involved the deletion of any messages from non contacts.
The messages that were not deleted were then placed in
the ‘inbox’ directory on the local PC. Only the contents
of this inbox were displayed to the child.

1.2.5 Jokes
To encourage children to use Mifrenz the user interface
included the option for children to create, send and collect
jokes. These jokes were stored on the local disk drive.

1.2.6 Development environment
Mifrenz was developed using the Netbeans Integrated
Development Environment (IDE) (Netbeans, n.d.) and the
Java SE Development Kit (JDK) (Sun Microsystems,
2007) programming language. Predefined classes of the
JavaMail API (Sun Microsystems, 2008)) were used to
access SMTP (Simple Mail Transfer Protocol) and POP3
email servers for sending and receiving email
respectively.

2 Problem Identification and motivation
Identifying the problem was an iterative process. True to
the framework proposed by Peffers (2006) it was the
evaluation of a previous piece of work (Mifrenz 0.1) that
identified the initial problem for this work.

2.1 Evaluation of Mifrenz 0.1
During end user evaluation of Mifrenz 0.1, it became
clear that a problem arose when a child wished to access
their email from multiple locations – a substantial number

221

of children live with separated parents. This problem
arose because Mifrenz was implemented so that all email
messages where downloaded from the email server to the
local PC (and removed from the server). In situations
where a child shared time between two households, when
they were at one of the locations, they would not have
access to emails that had been downloaded to the other
location.
In addition to accessing their messages from multiple
locations, was the problem that the contact information
was also stored locally and so would not be available at
other locations.
A final problem was that any jokes that had been created
or collected were also stored locally and so would not be
available from another location.
The problem for this current work was therefore how to
provide children access to their email, contacts and jokes
from multiple locations while still meeting the constraints
imposed by providing an application suitable for children.

3 Objectives of a solution
A solution was required that would allow a child to
access their email, contacts and jokes from multiple
locations while still restricting the email that they send
and receive to email addresses that have been approved
by their parent. Ideally the solution should build on
Mifrenz 0.1 to take advantage of the work already
completed.
The solution should not depend on the provision of a
dedicated email server.
The objectives can be divided into three categories

1. Access to received and sent messages from
multiple locations

2. Access to persistent data (contacts and jokes)
from multiple locations.

3. Refactoring of Mifrenz 0.1.

4 Design and development
This section first describes the various designs that were
contemplated and eventually chosen. The development
of these designs and integration into the Mifrenz
application is then described.

4.1 Design
The design started with the consideration of the available
technologies that might be applicable to solving the
identified objectives. Each of the three objective
categories is considered in turn.

4.1.1 Access to received and sent messages
from multiple locations

There are really only three technologies to consider,
SMTP, POP3 and IMAP as these are the only protocols
that email servers provide.

4.1.1.1 SMTP
This has to be used to send emails but it does not keep a
copy (accessible by the user) of the sent message on the
server. For an application to show messages that have
been sent from multiple locations another method must be

used. Displaying of sent messages therefore became
another ‘access to persistent data’ problem and is
considered in section 4.2.

4.1.1.2 POP3
The ability to access all previously received email
messages is possible using POP3 if the option to leave
messages on the server is selected. This feature of POP3
is not designed to allow access from multiple email client
installations giving rise to the following issues:

Managing which emails have already been read
is difficult.
No access to sent emails from the other location
is provided.
No sharing of contacts is provided.

4.1.1.3 IMAP
The Internet Message Access Protocol, IMAP, is an
alternative protocol for message storage and retrieval that
is designed to leave messages on the email server so that
they can be available from multiple physical locations.
Although the IMAP protocol is seen as a superior method
of accessing email compared to POP3 (Spanbauer, 2006),
email server providers have been slow to offer this
service due partly to the high storage overhead required
of the server. This is because IMAP is designed for users
to keep their email on the server rather than download it
to their local computer. Google (2008) has recently
started to offer IMAP and as Claburn (2007) notes, “It’s a
nice feature that Google clearly thinks businesses will be
interested in”. Yahoo! has yet to offer IMAP support and
this lack of support is causing frustration amongst its
users, “So, now that gmail supports imap (for free), why
should I bother keeping a yahoo mail address...”, (Yahoo!
Answers, 2008).
When SMTP is used in conjunction with IMAP, sent
messages are still not made available to users unless also
deliberately stored in a location accessible by the user.

4.1.2 Access to persistent data
Contact, Joke and sent message files were originally
stored on the local PC hard drive. IMAP does not provide
for access to contacts and definitely not jokes! Therefore
another solution was required. In addition, the ability to
share the sent messages between separate installations of
Mifrenz was also required. This section describes two
designs that were developed for the persistent storage of
this data that could provide multi location access.

4.1.2.1 Google Docs
Google Docs (2008) is a Beta web application from
Google that allows you to create and store various
document types on a web accessible personal storage
space. What makes this interesting for Mifrenz 0.2, is
that Google provides a Java API (Application Program
Interface) that allows code based creation and reading of
stored files. During the development of Mifrenz 0.2 a
proof of concept program was written that stored and
retrieved contact information in a spreadsheet format on
the Google Docs web storage site. The spreadsheet could
be created automatically and so this provided an

222 Where are mifrenz.docx

alternative solution for storing contact and joke
information. The services offered by Google Docs and
Google Gmail (Google, 2008) therefore provided a path
for implementing Mifrenz 0.2.
Unfortunately, Gmail’s terms and conditions do not allow
accounts to be used by children under 12 years old.
Having said that, some parents may wish to use Gmail as
they may take the view that as their child does not
actually have access to the Gmail password when using
Mifrenz it is the parent who is using Gmail. To avoid any
issues with the Gmail terms and conditions, and to avoid
relying on a single IMAP service provider, the Google
Docs solution was not adopted.

4.1.2.2 IMAP messages
IMAP does not describe either storage or retrieval of
contacts. This means that an email server that provides
an IMAP service cannot provide a contact service over
the IMAP protocol. This has been raised as an issue in a
number of discussion forums on the web, showing the
common frustration with this protocol from IMAP users.
Users of the popular email client called Thunderbird
(Mozilla, 2008) can now install an extension (SyncKolab,
2008), that is still in beta testing stage, that utilizes a
message folder to store contact information. Each time
the user runs Thunderbird, the locally stored contacts are
synchronized with a message folder on the IMAP server
that actually stores contact information in the body of the
message.
The idea of storing contact information in an IMAP
message was developed into a design for storing all
persistent data for Mifrenz 0.2. The design specified that
contacts were represented by messages in an IMAP email
server folder called mifrenzcontacts. A number of
predefined properties (accessible via methods) can be
stored in a Message object such as who the message is
being sent to and from. However, as a message is not
designed to store contact information some of the contact
details had no convenient field to store the required data.
The method ‘setRecipients’ using the constant
‘Message.RecipientType.TO’ was used to store the email
address of the contact (only one address per contact
permitted), and could be used as a unique field. The
‘setFrom’ method was used to store the email address of
the child using the software and the ‘setSubject’ method
was used to store the username of the same child. The
remaining contact information (first and last name of
contact, and the approval status of the contact were stored
using the ‘setText’ method. Approval status refers to
whether or not a parent has given approval for a child to
use a contact. The setText method is the method that is
normally used to store the words that a person types into
an email. In this case each of the values were stored on a
separate line in order to make extracting the values back
out simply a matter of reading each line in turn.
Unlike Thunderbird, the contacts in Mifrenz need to be
accessed by both the child and the parent. So keeping in
mind the previously mentioned issue of providing local
storage access, it was decided to implement a solution
that had no local storage of either messages, contacts or
jokes. Storage of the Mifrenz user accounts was still

local, as they contained the email server configuration
data required to access the server e.g. username,
password, server address and port numbers.
As described earlier, before new emails are displayed to
the child, emails from non contacts are first deleted and
only those that are left are stored in a folder that the child
sees. This was seen as a robust design, and it was
decided to replicate it in Mifrenz 0.2. So, messages in the
IMAP inbox are now downloaded to the Mifrenz
application, where they are filtered using the contacts list
before being saved in a new folder (called mifrenzinbox)
on the IMAP server. The JavaMail API provides
methods for creating new folders on an IMAP server,
allowing the automatic creation of this folder. This is
important as it is the intention of Mifrenz to be as simple
as possible to install. Mifrenz could then display all
messages in the mifrenzinbox folder in a similar way to
displaying locally stored messages. The sequence of
events for displaying received messages is shown in
Figure 1.

Figure 1 This UML sequence diagram shows the
sequence of events for displaying email messages sent to
the child. When a Child first logs, Mifrenz retrieves a list
of the child’s contacts and then retrieves and displays the

messages that have already been saved in the mifrenz
inbox. When a child presses the ‘Check Email’ button,
all the messages in the normal Inbox are downloaded,

filtered and then saved in the mifrenz inbox. The display
is finally updated to reflect any changes in the mifrenz

inbox.

4.1.3 Refactoring
Mifrenz 0.1 used objects of a class called Email
(specifically designed for this application) to represent
email messages. During the development of Mifrenz 0.2
the code was ‘refactored’ (reworked) to replace all
references to the Email class with the JavaMail API
Message class. One reason for doing this was because
objects of the Message class would now be stored on the
server; the JavaMail API obviously does not recognise
the Email class. This required further refactoring to be

223

done as the Email class was being used to store an object
of the Contact class, giving easy access to the contact that
sent (or was being sent to) an email. It was hoped that
using the standard Message class would provide other
benefits that come with standardisation and using
predefined classes with a range of predefined methods.

4.2 Development
Mifrenz consists of approximately 50 classes grouped
into one of 3 packages:

Presentation package
Deals with the graphical user interface.

Business Logic package
Applies the rules of the application and provides all
access to the data access package classes.

Data Access package.
Deals with access to data either stored on the local hard
disk or the email server.
The three layer structure of the application limits the
effects of changes to one class on another class. So when
the class that accessed the POP server was replaced with
a class that accessed an IMAP server, the rest of the
software did not have to be changed. Having said that, as
already mentioned, some refactoring was also done. This
was mainly the replacement of the Email class with the
Message class. Whereas the Email class was written
specifically for this application, the Message class is a
generic class found in the JavaMail API. Because the
Email class had been used to pass data from the Data
Access layer through the Business Logic layer up to the
Presentation layer, changes were required in a large
amount of the existing code. In Mifrenz 0.1, data (such
as emails and jokes) was stored on the local disk and the
user name of the current user was used to determine its
location. In Mifrenz 0.2, a new class called
ObjectRepository was created to store the current user’s
data. When Mifrenz launches, an instance of this class
was populated with all the email messages stored on the
IMAP server (for this user), along with contacts and
jokes. The significance of this ObjectRepository class is
that once the data has been downloaded from the email
server, the data is stored in the computers RAM, and so
readily available to the application for displaying.

5 Demonstration
At the time of writing, the Mifrenz email application for
children is in the process of being converted from a POP3
based email application to an IMAP application. Proof of
concept of storage of contact information in an IMAP
folder has been achieved and integration of this
technology is into Mifrenz 0.2 is being completed.
Figure 2 shows a screen shot of the child interface, and
Figure 3 shows a screen shot of the parent interface.

Figure 2: The Mifrenz Child GUI. All the information is
available from a single screen making navigation easy.

Figure 3: This is the main GUI for the parent. It shows
the children that have been added as users, and the
contacts for the highlighted child. Child details and
contact details can be added or changed by clicking of the
appropriate buttons on this screen.

6 Evaluation
Evaluation of Mifrenz will consist of standard software
testing practices and will be followed by feedback from
end user use.

6.1 Testing
As all the data is stored on the email server, there was a
significant delay from when the application was launched
to when the users’ messages were displayed.
Investigations need to be made to see if progressive
loading of the data can be achieved (possibly
downloading only the message headers first) so giving a
more satisfying user experience compared with the
current wait while data is downloaded in the background.

6.1.1 IMAP servers
As already mentioned, although Google Gmail provides
an IMAP service, Google’s terms and conditions restrict
usage to children 12 years or older. Another free IMAP
email provider that has been tested with Mifrenz 0.2 is
@inMail24.com (2008). Also Clearnet (2008) is one of
the few New Zealand Internet Service Providers (ISPs)
that currently offer an IMAP service.

6.2 Conclusion
IMAP is often seen as a superior (over POP3) method of
accessing email when users wish to access their email
from multiple computers. Testing of Mifrenz 0.1 showed
that children are often in the situation of requiring multi-
computer access to their email. It was discovered that
although IMAP had advantages, it also had the major
disadvantage of not providing a built-in means of storing
contact information. This work successfully

224 Where are mifrenz.docx

demonstrated that contact information could instead be
stored in normal message folders on the IMAP server.
The use of Google Docs was also demonstrated to be an
alternative solution for storing contact information,
although it was not adopted as a solution for the Mifrenz
software due to the age restriction of using Google
Gmail/Docs being incompatible with a children’s’ email
application.

6.3 Future work
A feature of Mifrenz 0.1 is the built in facility for creating
and sharing jokes between friends. At the time of
writing, this feature had not yet been implemented in the
IMAP version. In Mifrenz 0.1 jokes were stored as a
binary file (a serialised object) and sent as attachments to
emails. Two issues exist with this: 1) the joke cannot be
read by non Mifrenz users e.g. a grandparent, and 2) if the
Mifrenz Joke class changes, jokes saved as an older
version will not be recognised by the new version. Work
is underway to solve these issues, and it is envisaged that
jokes will be stored as plain text attachments or in the
main body of the email message.

7 Communication
The final stage of the Design Science Research Process
framework as proposed by Peffers (2006) is the
communication of the research – this paper. In addition
the new features described in this paper will be
incorporated into Mifrenz 0.2 and will be available for
download from http://mifrenz.com.

8 Acknowledgements
I would like to thank my colleagues at Wintec who
provided invaluable feedback on development of this
paper: in particular – Garry Roberton, Dileep Rajendran,
Finlay Scott, Hami Te Momo and Susan Bennett. Any
errors remaining are wholly the author’s responsibility.

9 References
@inMail24.com. (2008). Your own e-mail address and

photo album – for free! Retrieved May 9, 2008 from
http://www.inmail24.com/Login.aspx.

Claburn, T. (2007). Google Takes No
Prisoners. InformationWeek,(1160), 22. Retrieved
March 8, 2008, from ProQuest Computing database.
(Document ID: 1379818961).

Clearnet. (2008), Clearnet beta. Retrieved May 9, 2008
from http://clear.net.nz/

Google. (2008). GMail Beta, Welcome to Gmail.
Retrieved April 21, 2008, from http://Gmail.com
Google Docs. (2008). Welcome to Google Docs.

Retrieved May 9, 2008, from
https://www.google.com/accounts/ServiceLogin?servic
e=writely&hl=en&passive=true&continue=http%3A%
2F%2Fdocs.google.com%2F<mpl=WR_tmp_2_lfty
&nui=1&utm_campaign=en&utm_source=en-et-
more&utm_medium=more

Hunt, T.D. (2007). Mifrenz: A new email client
application for children. In S. Mann & N. Bridgeman
(Eds.) Proceedings of 20th Annual Conference of the

National Advisory Committee on Computing
Qualifications (pp. 99-105). Nelson, New Zealand:
NACCQ.

Kidmail.net. (2007) Kidmail.net, The Safe E-Mail
Service. Retrieved February 28, 2007, from
http://www.kidmail.net/default.asp

Microsoft Corporation. (2008). Windows Live. Retrieved
April 21, 2008, from
http://www.windowslive.com/overview.html
MacManus, R. (2007). Point/Counterpoint: Which is

better, an offline Web App or an online Desktop App?
Retrieved March 8, 2008, from
http://www.readwriteweb.com/archives/offline_webap
ps_online_desktop_counterpoint.php.

Mozilla. (2008). Thunderbird2. Retrieved May 9, 2008,
from http://www.mozilla.com/en-US/thunderbird/

Netbeans. (n.d.). Netbeans IDE 5.5. Retrieved February
28, 2007, from http://www.netbeans.org/
Peffers, K., Tuunanen, T., Gengler, C. E., Rossi, M., Hui,

W., Virtanen, V. and Bragge, J. (2006). The Design
Science Research Process: A Model for Producing and
Presenting Information Systems Research. Retrieved
April 6, 2008, from
http://ncl.cgu.edu/designconference/DESRIST%20200
6%20Proceedings/4A_2.pdf

Spanbauer, S. (2006). Drop POP E-Mail for the Freedom
of IMAP Servers. PC World, 24(12), 176. Retrieved
March 8, 2008, from ProQuest Computing database.
(Document ID: 1167300961).

Sun Microsystems. (2007). Sun Developer Network
(SDN), Java.sun.com, The source for Java developers.
Retrieved February 28, 2007, from http://java.sun.com/
Sun Microsystems. (2008). Sun Developer Network
(SDN), J2EE JavaMail. Retrieved May 9, 2008, from
http://java.sun.com/products/javamail/index.jsp
SyncKolab. (2008). Sync Kolab. Retrieved May 9, 2008,

from http://www.gargan.org/extensions/synckolab.html
The IMAP Connection. (2008). Retrieved May 9, 2008,

from http://www.imap.org/
Yahoo! Answers. (2008). Retrieved March 8, 2008, from

http://answers.yahoo.com/question/index?qid=2007102
9185456AAWGQAK

