
41

Augmenting Compiler Error Reporting in the Karel++
Microworld

Dr Chris Burrell
Waikato Institute of Technology
Chris.Burrell@Wintec.ac.nz

Dr Matt Melchert
Waikato Institute of Technology
Matt.Melchert@Wintec.ac.nz

Abstract
This paper illustrates the problems involved with
novices learning to program and the role of the
compiler in identifying and reporting on errors. Errors
associated with the structure and syntax of the program
are easily identified and can normally be reported on
by the compiler in a form that may understandable to
programmers with a good background knowledge.
Once these problems have been identified another class
of problem may emerge. That of simple user error in
mistyping, or misremembering the names of
programming elements that have been declared and
defined earlier in the code. This paper describes an
application of a cross correlation technique that has
been used in transmitting data through space by NASA
to looking for best-fit word matches in the symbol
table produced as the program is compiled. A match
with a pre-declared name and one with three
typographical errors is shown.

Keywords: Computing education, microworld,
compiler help, correlation techniques

1 Introduction
Educators concerned with teaching programming know
that it is one of the hardest disciplines to learn, that
each student is different and that most of the tools
available are designed for experts rather than novices.
Novice programmers make many mistakes whilst
learning the language and the environment within
which they work whilst developing the ability to
problem solve in that environment, McGill and Volet
(1997).

The practice of choosing suitable names when writing
code and using techniques of capitalisation whether the
language is case sensitive or not all need to be learned.
When the errors associated with opening and closing
brackets and language structure are accounted for
many of the remaining errors that are made are, for one
reason or another, typographical.

This quality assured paper appeared at the 20th

Annual Conference of the National Advisory
Committee on Computing Qualif ications (NACCQ
2007), Nelson, New Zealand. Samuel Mann and
Noel Bridgeman (Eds). Reproduction for academic,
not-for profit purposes permitted provided this
text is included. www.naccq.ac.nz

Typically a compiler does not does not check for
spelling or similar forms of error. This research
examines, adapts and implements a data
communications error correcting technique in an
attempt to provide more informative feedback to a
novice programmer using the Karel++ microworld
environment developed at Wintec.

1.1 Methodology
Anyone who has attempted to write a compiler knows
how difficult it is to write meaningful help that is
presented when an error is encountered. Anyone who
has used a compiler knows how difficult it is to
interpret the help offered in the context it is presented.
A lot of background knowledge is often required to
make effective use of the information. This research
looks at the ability to find and present best matches
words mistyped into the source code of a program. A
technique is adopted, adapted and implemented with
encouraging results.

2 The Karel++ Microworld Environment
The Karel++ microworld (Figure 1)enables
programmers to write, compile and run object oriented
code in a similar way to using a commercial Interactive
development environment(IDE)(Burrell, 2001, 2002,
2003, 2004)

The microworld environment as implemented at
Wintec works as a virtual machine that executes
tokenised code constructed in an extended symbol
table. The language is described in Backus–Naur form
(BNF) and follows a declare before use structure. The
normal error reporting procedures from the recursive
descent compiler are augmented by a cross correlation
pattern matching technique to help identify best fit
mistyped words.

3 Novices Learning to program
Novice programmers learn a language and its rules at
the same time as learning to solve problems and
become conversant with the working environment.
The student has to come to an understanding of the
capabilities of the language and more immediately has
to learn, and use correctly, naming conventions for
objects, methods, attributes and variables.

42

Figure 1The Karel++ IDE used at Wintec

3.1 The skills and abilities required
Two fundamental types of generally accepted
knowledge are:

Declarative: The ability to specify objects and
events by the properties that characterise
them.

Procedural: The ability to identify, or
perform, sequences of actions that achieve a
desired result.

Knowledge about programming can be classified using
these headings but additionally software developers
also need to have effective command of three separate
but interrelated types of programming knowledge.
(Bayman & Mayer, 1988)

These are

Syntactic: Knowledge of facts that are
specific to a particular programming
language, and the rules for their use.

Conceptual: Understanding of computer
programming constructs and principles.

Strategic: Programming specific versions of
general problem solving skills.

McGill and Volet (1997) produced a framework, that
combines these concepts.

To novice programmers, the obstacles to be overcome
when presented with their first problems can seem
enormous. Almost everything to be learned in terms of
the problem and the means of its solution are abstract.
Learning to think and work in any recognised
paradigm let alone to produce working program
implementations is found to be very demanding by
many, and daunting by some (personal observation).

With little relevant formal or informal knowledge
about any sort of programming, novices are expected
to form an understanding of the problem and then use
the available tools and recently acquired techniques to
develop and implement cohesive, structured and
successful solutions. By progressing through a
sequence of supportive and exploratory exercises the

student is expected to construct their knowledge. The
cognitive load is very high.

The process followed is essentially, edit the code using
an editor, compile the code and debug the code until
there are no more syntax errors and when compilation
is finally successful, run the code the code to see if it
does what it was supposed to.

3.2 Inattention to detail
Overlooked in the formal knowledge structure and one
of the problems faced by many using computers and
not only programmers are simple errors through
inattention to detail.

One of the problems faced by novice programmers
when learning a language and writing code is simple
errors due to misspelling, capitalization, or typing in a
name that they think has been used before but spelling
part of it differently. Often the error checking and
“help” capabilities of a compiler do not or cannot cope
with this sort of error well.

In a commercial IDE simple spelling, typographical or
capitalization errors often generate unhelpful error
messages. This can be particularly confusing for a
novice who may have insufficient background
knowledge to identify the real cause of the trouble.

4 Compiler Operations
The compiler is designed to obey the rules and
expectations of the language and apply them with the
aim of producing runnable code. Any departure from
the structure and rules embedded in the language
design is detected and reported with an error message.

A computer language has a list of known reserved
words. A programmer uses these and also generates
their set of identifiers for such purposes as class and
method names and the names of objects, attributes and
other variables. As part of the compilation process a
symbol table is generated that lists all reserved words
and declarations.

The Karel++ language is similar to many in that it has
a declare-before-use approach. Names become
progressively available and are added to a symbol table
as the compiler progresses through the code. When the
compilation process finds a piece of text that it cannot
understand or was not expecting, an error message is
produced.

Errors detected at compile time are often the result of
not finding a symbol, character or sequence of letters
that exactly matches those expected. Problems with
the structure of the program are dealt with by the
nature of the compiler and reported on. There could be
more simple explanations for the error, such as
capitalisation and case sensitivity which the student
needs to understand and master. The problems could
also result from making typographical errors, or simply
guessing the name of something that has been
previously declared.

43

All the reserved words, pre-declared by the language,
and are effectively in a symbol table but are not
normally available to the user. The declarations made
by the programmer are stored in a symbol table
intended for inspection if needed. When there is no
match to the text stored in the symbol table, a standard
error message is generated. How close a match
between the text-in-error is to anything that has been
used before, is not considered.

The question could then become one of “How near a
match is a word in the symbol table to the word just
found” ?

4.1 Providing help from a compiler
A compiler processes statements written in a
programming language with the intention of producing
code that can be run by a machine. A recursive
descent design was used for this implementation of
Karel++. This type of implementation matches the
definition of the language and naturally produces code
reflecting the structure of the grammar it finds. When
an error is encountered, there is an inherent ability to
“back out” and produce suitable error messages that
indicate where and why the structure of a program has
failed. This approach does not cope with spelling and
typographical errors. The technique described here is
an attempt to better inform the novice about errors that
may occur from mistyping.

Figure 2 below, shows only the first part of a typical
piece of code developed in the microworld
environment. At the end of this code snippet example
is one word with several wrong characters. A typical
compiler error could be expected to be “error XXX
undeclared symbol encountered. A visual inspection
shows that there is obviously some form of
typographic or spelling error but the compiler is
obviously not programmed to look for or cope with it.

5 Spell checking
In word processors spelling checkers are invoked when
words are encountered that are not in the dictionary.
The exact nature of the spell checking method is
usually proprietary and not known, but experience has
shown that a mistake in the middle of a word is enough
to detract from the list of words offered.

Where it may be desirable to have a context sensitive
spelling checker research has focussed on machine
learning techniques to help “Winnow” (Golding &
Roth, 1999) out correct choices from text.

Programming in the Karel++ environment does not
need the sophisticated techniques used in other
applications and can be approached with a more simple
solution.

The problem could be likened to a signal or message
being corrupted by noise. A more supportive
environment can find a “best match” among the
contents of the symbol table. Options can be presented
when the programmer is pointed to the place in the
original text file where the error was discovered.

class Greeter: ur_Robot

 { void turnAround ();

 void turnRight ();

 void moveToNextLetterStart ();

 void lowHorizontalBar ();

 void highHorizontalBar ();

 void midHorizontalBar ();

 void longVerticalBar ();

 void printO ();

 void printL ();

 void printE ();

 void printH ();

 void goToStart ();

 void printHello ();

 };

 void Greeter:: yurnAtpund ()

Figure 2 Typical code segment for Karel++,

6 Spell checking
In word processors spelling checkers are invoked when
words are encountered that are not in the dictionary.
The exact nature of the spell checking method is
usually proprietary and not known, but experience has
shown that a mistake in the middle of a word is enough
to detract from the list of words offered.

Where it may be desirable to have a context sensitive
spelling checker research has focussed on machine
learning techniques to help “Winnow” (Golding &
Roth, 1999) out correct choices from text.

Programming in the Karel++ environment does not
need the sophisticated techniques used in other
applications and can be approached with a more simple
solution.

The problem could be likened to a signal or message
being corrupted by noise. A more supportive
environment can find a “best match” among the
contents of the symbol table. Options can be presented
when the programmer is pointed to the place in the
original text file where the error was discovered.

7 A lesson from data transmission and
signal processing

When the transmission of information through a
medium results in a poor signal to noise ratio it
becomes difficult to determine the content of the
message. There are several coding and communication
techniques which can be used to try and recover the

44

original message. One method, that is useful when
several messages are known to be possible but the
correct one cannot be easily determined is to use the
technique of cross correlation.

This technique looks for a similarity between the
incoming message to a pre-stored expected messages.
If the two are exactly the same, then the highest value
of correlation or goodness-of-fit is achieved. Any
differences between the received and stored signals
generate much lower values.

The technique was first encountered by the author as
part of the NASA Mariner 9 picture transmission
system(Instrumentation Units 11,12,13: Noise in
Instrumentation Systems, 1974). All message content
was known but the transmission was likely to be
corrupted by significant noise. Identifying which
message (pixel value) was sent was the problem.

Information is recovered by “sliding” the digitized
received signal past each potential message in a
number of discrete steps. At each step, each pair of
signal values is multiplied and all are summed to give a
value of goodness (correlation). The highest value
generated once all of the processing is complete
identifies the best-fit correlation between the signal
and the potential messages. By substituting the best
match data for the corrupted sequence the original data
can be recreated.

This correlation method is illustrated with a simple
diagram Figure 3 A received sequence is compared

with each of the possible error free chain codes. The
best match has the highest correlation coefficient..

This technique is easily adapted to comparing
sequences of characters looking for “best match”
words.

8 Correlation with sequences of characters
In programming the “reference” sources only consist
of the words defined in the language and the words
defined by the programmer. In analyzing the program
the compiler builds this reference list in the symbol
table. The compiler can then check the contents of a
symbol table to see if the string of characters just found
are already in the symbol table, can be added to the
symbol table or are erroneous.

If the word is not found in the symbol table and cannot
be added, the correlation technique is invoked to find
the best match. A Boolean operation compares each
pair of characters as they are “slid” past each other,
and routine calculates a sum for that position. The
highest value obtained for the sequence is stored along
with the word. The set of operations is repeated for all
words in the symbol table and the resulting highest
number for all of the words identifies the best match.
A highest value can be obtained for any string found in
the source code file but not stored in exactly that form
in the symbol table. Sorting the words by the number
they produce provides a list in “most likely “ order.

Figure 3 A received sequence is compared with each of the possible error free chain codes. The best match has the
highest correlation coefficient.

45

In practice arrays or pointers can be used to effectively
slide the words past each other and compare each
character with its current counterpart.

The pseudo code Figure 4 shows how the program
works.

There is too much information offered, by this
implementation, when an error is found to include it all
in this paper.

The quantity may seem a little daunting at first but it is
logical. The output consists of a symbol table complete
to the point of the error, with the source line of the
declaration shown. A copy of the source code up to
the point where the error is found is also given with a
pointer to the position along the line the compiler has
reached. The user also has the ability to move to the
error position in the source code merely by mouse
clicking in the editor window.

This routine has been successfully integrated with the
simple recursive descent compiler in the microworld.
Observing it in action in the classroom has shown that
the dynamics of student tutor interaction has changed.
Less time is spent working on simple typographical
errors. Some students are inquisitive to know how the
method works and a simple one button press reveals,
immediately on the screen the extended symbol table
generated so far and the tokenised code developed to
that point. All is designed to increase awareness and
understanding of the processes involved.

Informal feedback from novice programmer students
has been positive. Feed back from advanced 3rd year
programming major students has not been deliberately
sought but some that have been used to more complex
environments have initially expressed surprised and are
impressed by the ability to offer solutions rather than
just state problems.

Repeat for each word in the symbol table
 Align end-of-search-word with start-of-symbol-table-word.

‘start of comparison
 Repeat until start of symbol-table-word compared with end of search word
 For each character position for the search word

if there is a match
give a value of one,
 else
give a value of zero.

endif
endFor
Total the ones, for this word in this position. ‘ calculate
correlation coefficient
Store the result, for this word in this position.
Slide the search string one character on.

 endRepeat
Find largest correlation coefficient for this symbol table entry and save

it
endRepeat
Sort all symbol table correlation coefficients by value’ The best match will
have the highest value.
Select (say) the largest 3 values
Return with the search-word and the 3 words with the largest correlation
coefficient.

Figure 4 The Psuedo Code for determing correlationDiscussion

9 Summary
Identifying programmer errors, of typographical,
spelling and misremembered names as a form of data
corruption triggered the approach to signal processing
techniques of error detection and correction. Applying
a concept used to improve the success rate of digital
data transmissions from a satellite in orbit around Mars
to text “discovered” by a compiler produced several
benefits, the most important being a suggestion to the
programmer of the nearest “fit” word.

The whole exercise could later be used as an
educational experience enabling and enhancing at least
the following

Concepts of error detection and correction

Codes and coding

Physical errors through corruption of the data

Physical errors by corruption at source

A compilers need for accuracy

46

Error List and Symbol Table <Greeter.kar> 14/03/2007 9:55:49 a.m.

 "1" #2000-06-01# #1899-12-30 15:05:41#

 Base Class Class Method Name Source Line

 * ur_Robot turnOff 0
 * ur_Robot turnLeft 0
..
 ur_Robot Robot facingSouth 0
 ur_Robot Robot facingEast 0
.. 1
 ur_Robot Greeter turnAround 2
 ur_Robot Greeter turnRight 3
..
 ur_Robot Greeter printHello 14

 1 class Greeter: ur_Robot
..
 17 void Greeter:: yurnAtpund ()
 ^
Error 1 GPM05> The Class > Greeter < does not have the Method Name > yurnAtpund < Defined.
You may have intended to write > turnAround <

I have also found the following. . . .
. . . .

Figure 5 A subset of the error output

However, by then the lessons of structure and correctness,
that this technique should have allowed the novice
programmer to concentrate on, should have been learned.

10 References
Burrell, C. J. (2001, October 10 - 13). Visualising and
interpreting individual student models developed whilst
learning the foundations of object oriented programming.
Paper presented at the 31st ASEE/IEEE Frontiers in
Education Conference, Reno, NV.

Burrell, C. J. (2002, November). Micrososft/APNZ Staff
Award. Paper presented at the The Association of
Polytechnics in New Zealand and Tairawhiti Polytechnic
(APNZ) Conference and Awards Dinner Celebrating
Diversity: a regional perspective, Gisborne.

Burrell, C. J. (2003). Observing Novice Programmer skill
development: A micro-world that supports object-
oriented programming and usage data visualisation. Paper
presented at the Third International Conference on
Science, Mathematics and Technology Education:
"Making Science, Technology and Technology Acessible
to All", East London, South Africa.

Burrell, C. J. (2004). The acquisition and analysis of
student models developed while learning programming
skills in a microworld learning environment. Unpublished
Doctor of Philosophy, Curtin University of Technology,
Perth, Australia.

Golding, A. R., & Roth, D. (1999). A Winnow-Based
Approach to Context-Sensitive Spelling Correction.
Machine Learning, 34(Numbers 1-3), 107-130.

Instrumentation Units 11,12,13: Noise in Instrumentation
Systems. (1974). Milton Keynes: The Open University
Press.

McGill, T. J., & Volet, S. E. (1997). A conceptual
framework for analyzing student's knowledge of
programming. Journal of Research on Computing in
Education, 29(3), 276-297.

