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ABSTRACT 

Although, computer system architecture and the throughput enhances continuously, the need for high computational 

speed and power in many scientific applications grows every day. As a result, implementation of parallel applications has 

gained more attention. Since nested loops are the most time-consuming parts of most programs, we propose a method for 

scheduling uniform nested loops to processors based on the equation of a straight line which includes the maximum 

possible number of dependence vectors. Experimental results show that the proposed method imposes a lower 

communication between processors compared with similar methods.  
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1. INTRODUCTION 
 

Parallel processing is a form of computing in which many 

instructions are executed simultaneously. The process of 

parallelization in general consists of three steps as follows 

(Sinnen, 2007): 

• Decomposing the application into tasks. 

• Analysing the dependencies between the 

decomposed tasks. 

• Scheduling tasks into the target parallel or 

distributed system. 

Since the most time-consuming parts of scientific and 

engineering sequential programs are nested loops and 

recursive procedures, their optimization plays an important 

role in reducing the execution time of the program. For 

parallelizing nested loops, at first, the iterations should be 

broken down into tasks. In the second step, dependencies 

between tasks must be discovered. Dependencies prevent 

parallel execution of tasks efficiently. Generally, there are two 

types of dependencies: 

• Data dependencies caused by data transfer between 

tasks. For example.: X = Y ; Z = X; 

 

 

• Control dependencies caused by the order of 

instructions that are logically related to each other. 

For example: 

IF cond THEN s1 ELSE s2 

There are two types of nested loops based on dependencies: 

• DOALL loops: Nested loops with no dependency. 

• DOACROSS loops: Nested loops with 

dependencies which are divided into two categories:  

o Uniform: A loop in which the pattern of 

dependencies remains constant during its 

execution  

o Non-uniform. A loop in which the pattern 

of dependencies may have variations 

during execution.  

In this paper we propose a novel approach to reduce the 

communication in uniform nested loops. 

2. METHODOLOGY 
Loop iteration space: Iteration space of any n-dimensional 

nested loop can be mapped into a finite discrete n-dimensional 

Cartesian space J={(j1,…,jn) Є Nn | lr ≤ jr ≤ ur , 1 ≤ r ≤ n}, in 

which each point represents an iteration of the nested loop. 

The body of each loop may include a set of instructions. 

Loop dependencies: Statements S1 in iteration J1 is 

dependent to statement S2 in iteration J2 if and only the 

following conditions hold: 

1-  ( J1 < J2 ) or (J1 = J2 ) and an execution path exists 

from  J1 to  J2 

2- both statements access a same memory location 

3- at least one access modifies the memory content 

Dependence vectors: In a n-dimensional nested loop existing 

dependency between two iterations J1 and J2 (if any) is 

represented by a dependence vector d of length n: 

 d(J1 , J2) = (J21 – J11 , J22 – J12 ,…, J2n – J1n) 

The size of dependence vector, which is always greater than 

zero, shows the number of iterations between two dependent 

iterations. If the size of all dependence vectors remains fixed 

during the execution of a loop, the loop is known as a uniform 

loop. 
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Example 1: The dependence vectors of the two dimensional 

nested loop in Figure 1are: d1 = (1, 3), d2 = (2, 2), d3 = (4, 1) 

and are shown in Figure 2. 

 

  

Figure 1. A two Dimensional nested loop with three 

dependence vectors 

 

  

Figure 2. Dependence vectors of nested loops in Figure 1 

The communication vector (dc): Communication vector is a 

vector that incurs the largest amount of communication. In 

most cases the communication vector is the dependence 

vector with the smallest absolute coordinate values. 

Our proposed algorithm which is referred as the Best Straight 

Line Scheduling (BSLS), uses the concept of chains which 

was introduced in Chain Pattern Scheduling (CPS) algorithm. 

The idea of BSLS is to minimize the communication cost 

between dependent iterations by assigning them to a single 

processor. In other words, when a point Js= (xs , ys) sends 

data to points in set DP={ J1,. . . , Jm } because of 

dependence vectors d1, . . . , dm, by mapping Js and all points 

of set DP to a single processor, the communication incurred 

by vectors d1, . . . , dm is eliminated. However it is impossible 

to map all such points to a processor. If we map the point Js, 

with maximum number of possible points from DP to a 

processor, the data locality will be increased. In the proposed 

approach, the points assigned to a processor are determined by 

a straight line which passes through the maximum number of 

points in DP. This line is referred to as the best straight line.  

In this algorithm, for each pair of points in DP, the equation of 

the line passes these two points is determined. Then, the 

number of other points lie on this line is calculated. The line 

on which the maximum number of points lies will be the best 

straight line. The points of DP lie on the best straight line 

along with Js are assigned to a single processor. 

Since the dependence vectors remain unchanged during 

the execution of the loop, the equation of the straight line can 

be used to chain all points in the iteration space. In a two-

dimensional space, assuming the equation of the straight line 

be y=m*x+r, the equation of chains are are:  Ci = { j ∊ J | j = 

m * x + ri , m and r ∊ R} where ri is the offset of the ith chain 

with the best straight line.  

Example 2: We consider a system with 4 processor and a 

two-dimensional uniform nested loop with the following 

dependence vectors: d1 = (1, 3), d2 = (2, 2), d3 = (4, 1) and the 

communication vector dc = d2. The following equations are 

candidates for being the equation of the best straight line: 

1) y = - x + 4 { (1,3) , (2,2) } 

2) y = - 2/3 x + 8 { (1,3) , (4,1) } 

3) y = - 1/2 x + 9 { (2,2) , (4,1) } 

Each line passes two points of set DP, thus, each of them 

can only eliminate two dependence vectors. In Figure 3 the 

equation y = -x + 4 is being considered for the best straight 

line and chains are formed in parallel with this line. In this 

way, the communication cost between d1 and d2 is eliminated. 

Chains are assigned to processors in a round robin fashion 

shown in the figure in different colors.  

 

Figure 3. Chaining of points in an index space of a two 

dimensional nested loop with four dependence vectors 

and four processors using the proposed algorithm  

3. RESULTS 
 

To evaluate the proposed approach in terms of the 

communication cost, we compare it with CSP.  In this 

experiment, we examine the uniform nested loop given in 

Example 1which includes four dependence vectors. The index 

space ranges from 10 × 10 to 1000 × 1000. Results have been 

depicted in Figures 4 and 5 with 4 and 5 processors, 

respectively.  Since in this experiment each line passes two 

points (see Example 5), the worst case of the proposed 

algorithm happens. However, the proposed algorithm works 

better than CSP when number of processors is 4. Note that in 

diagrams, the total column shows all dependencies in the 

iteration space. 
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Figure 4. Experimental results, BSLS versus CPS, on four processors 

 

Figure 5. Experimental results, BSLS versus CPS, on five processors 

 


