
Minimizing Synchronization in Parallel Nested Loops

Reza Rafeh

Centre for Business, Information

Technology and Enterprise

Waikato Institute of Technology

Hamilton, New Zealand

Reza.Rafeh@ wintec.ac.nz

Mohammad Hossein Roosta

Department of Computer Engineering,

Islamic Azad University, Malayer Branch,

Malayer, Iran

roosta_mh@yahoo.com

ABSTRACT

Although, computer system architecture and the throughput enhances continuously, the need for high computational

speed and power in many scientific applications grows every day. As a result, implementation of parallel applications has

gained more attention. Since nested loops are the most time-consuming parts of most programs, we propose a method for

scheduling uniform nested loops to processors based on the equation of a straight line which includes the maximum

possible number of dependence vectors. Experimental results show that the proposed method imposes a lower

communication between processors compared with similar methods.

Keywords: Uniform Nested loops, Scheduling, Chaining, Communication.

1. INTRODUCTION

Parallel processing is a form of computing in which many

instructions are executed simultaneously. The process of

parallelization in general consists of three steps as follows

(Sinnen, 2007):

• Decomposing the application into tasks.

• Analysing the dependencies between the

decomposed tasks.

• Scheduling tasks into the target parallel or

distributed system.

Since the most time-consuming parts of scientific and

engineering sequential programs are nested loops and

recursive procedures, their optimization plays an important

role in reducing the execution time of the program. For

parallelizing nested loops, at first, the iterations should be

broken down into tasks. In the second step, dependencies

between tasks must be discovered. Dependencies prevent

parallel execution of tasks efficiently. Generally, there are two

types of dependencies:

• Data dependencies caused by data transfer between

tasks. For example.: X = Y ; Z = X;

• Control dependencies caused by the order of

instructions that are logically related to each other.

For example:

IF cond THEN s1 ELSE s2

There are two types of nested loops based on dependencies:

• DOALL loops: Nested loops with no dependency.

• DOACROSS loops: Nested loops with

dependencies which are divided into two categories:

o Uniform: A loop in which the pattern of

dependencies remains constant during its

execution

o Non-uniform. A loop in which the pattern

of dependencies may have variations

during execution.

In this paper we propose a novel approach to reduce the

communication in uniform nested loops.

2. METHODOLOGY
Loop iteration space: Iteration space of any n-dimensional

nested loop can be mapped into a finite discrete n-dimensional

Cartesian space J={(j1,…,jn) Є Nn | lr ≤ jr ≤ ur , 1 ≤ r ≤ n}, in

which each point represents an iteration of the nested loop.

The body of each loop may include a set of instructions.

Loop dependencies: Statements S1 in iteration J1 is

dependent to statement S2 in iteration J2 if and only the

following conditions hold:

1- (J1 < J2) or (J1 = J2) and an execution path exists

from J1 to J2

2- both statements access a same memory location

3- at least one access modifies the memory content

Dependence vectors: In a n-dimensional nested loop existing

dependency between two iterations J1 and J2 (if any) is

represented by a dependence vector d of length n:

 d(J1 , J2) = (J21 – J11 , J22 – J12 ,…, J2n – J1n)

The size of dependence vector, which is always greater than

zero, shows the number of iterations between two dependent

iterations. If the size of all dependence vectors remains fixed

during the execution of a loop, the loop is known as a uniform

loop.

This poster appeared at the 8th annual conference of Computing and Information

Technology Research and Education New Zealand (CITRENZ2017) and the 30h

Annual Conference of the National Advisory Committee on Computing

Qualifications, Napier, New Zealand, October 2-4, 2017. Email Emre Erturk

eerturk@eit.ac.nz for questions about the template or submissions to EasyChair.

mailto:eerturk@eit.ac.nz

Example 1: The dependence vectors of the two dimensional

nested loop in Figure 1are: d1 = (1, 3), d2 = (2, 2), d3 = (4, 1)

and are shown in Figure 2.

Figure 1. A two Dimensional nested loop with three

dependence vectors

Figure 2. Dependence vectors of nested loops in Figure 1

The communication vector (dc): Communication vector is a

vector that incurs the largest amount of communication. In

most cases the communication vector is the dependence

vector with the smallest absolute coordinate values.

Our proposed algorithm which is referred as the Best Straight

Line Scheduling (BSLS), uses the concept of chains which

was introduced in Chain Pattern Scheduling (CPS) algorithm.

The idea of BSLS is to minimize the communication cost

between dependent iterations by assigning them to a single

processor. In other words, when a point Js= (xs , ys) sends

data to points in set DP={ J1,. . . , Jm } because of

dependence vectors d1, . . . , dm, by mapping Js and all points

of set DP to a single processor, the communication incurred

by vectors d1, . . . , dm is eliminated. However it is impossible

to map all such points to a processor. If we map the point Js,

with maximum number of possible points from DP to a

processor, the data locality will be increased. In the proposed

approach, the points assigned to a processor are determined by

a straight line which passes through the maximum number of

points in DP. This line is referred to as the best straight line.

In this algorithm, for each pair of points in DP, the equation of

the line passes these two points is determined. Then, the

number of other points lie on this line is calculated. The line

on which the maximum number of points lies will be the best

straight line. The points of DP lie on the best straight line

along with Js are assigned to a single processor.

Since the dependence vectors remain unchanged during

the execution of the loop, the equation of the straight line can

be used to chain all points in the iteration space. In a two-

dimensional space, assuming the equation of the straight line

be y=m*x+r, the equation of chains are are: Ci = { j ∊ J | j =

m * x + ri , m and r ∊ R} where ri is the offset of the ith chain

with the best straight line.

Example 2: We consider a system with 4 processor and a

two-dimensional uniform nested loop with the following

dependence vectors: d1 = (1, 3), d2 = (2, 2), d3 = (4, 1) and the

communication vector dc = d2. The following equations are

candidates for being the equation of the best straight line:

1) y = - x + 4 { (1,3) , (2,2) }

2) y = - 2/3 x + 8 { (1,3) , (4,1) }

3) y = - 1/2 x + 9 { (2,2) , (4,1) }

Each line passes two points of set DP, thus, each of them

can only eliminate two dependence vectors. In Figure 3 the

equation y = -x + 4 is being considered for the best straight

line and chains are formed in parallel with this line. In this

way, the communication cost between d1 and d2 is eliminated.

Chains are assigned to processors in a round robin fashion

shown in the figure in different colors.

Figure 3. Chaining of points in an index space of a two

dimensional nested loop with four dependence vectors

and four processors using the proposed algorithm

3. RESULTS

To evaluate the proposed approach in terms of the

communication cost, we compare it with CSP. In this

experiment, we examine the uniform nested loop given in

Example 1which includes four dependence vectors. The index

space ranges from 10 × 10 to 1000 × 1000. Results have been

depicted in Figures 4 and 5 with 4 and 5 processors,

respectively. Since in this experiment each line passes two

points (see Example 5), the worst case of the proposed

algorithm happens. However, the proposed algorithm works

better than CSP when number of processors is 4. Note that in

diagrams, the total column shows all dependencies in the

iteration space.

4. REFERENCES
Akhter, S., & Roberts, J. (2006). Multi-Core Programming

(Vol. 33): Intel Press.

Banerjee, U., Eigenmann, R., Nicolau, A., & Padua, D. A.

(1993). Automatic program parallelization. Proceedings of

the IEEE, 81(2), 211-243.

Beletska, A., Bielecki, W., Cohen, A., Palkowski, M., &

Siedlecki, K. (2011). Coarse-grained loop parallelization:

Iteration space slicing vs affine transformations. Parallel

Computing, 37(8), 479-497.

Bondhugula, U. (2013). Compiling affine loop nests for

distributed-memory parallel architectures. Paper presented

at the Proceedings of SC13: International Conference for

High Performance Computing, Networking, Storage and

Analysis.

Boulet, P., Darte, A., Risset, T., & Robert, Y. (1994). (Pen)-

ultimate tiling? Integration, the VLSI Journal, 17(1), 33-

51.

Calland, P. Y., Darte, A., Robert, Y., & Vivien, F. (1998). On

the removal of anti-and output-dependences. International

Journal of Parallel Programming, 26(3), 285-312.

Ciorba, F. M., Andronikos, T., Drositis, I., Papakonstantinou,

G., & Tsanakas, P. (2005). Reducing the communication

cost via chain pattern scheduling. Paper presented at the

Network Computing and Applications, Fourth IEEE

International Symposium on.

Darte, A., Khachiyan, L., & Robert, Y. (1991). Linear

scheduling is nearly optimal. Parallel Processing Letters,

1(2), 73-81.

Drositis, I., Goumas, G., Koziris, N., Tsanakas, P., &

Papakonstantinou, G. (2000). Evaluation of loop grouping

methods based on orthogonal projection spaces.

Irigoin, F., & Triolet, R. (1988). Supernode partitioning.

Paper presented at the Proceedings of the 15th ACM

SIGPLAN-SIGACT symposium on Principles of

programming languages.

Johnson, D. S. (1990). The NP-completeness column: An

ongoing guide. Journal of Algorithms, 11(1), 144-151.

Lim, A. W., Cheong, G. I., & Lam, M. S. (1999). An affine

partitioning algorithm to maximize parallelism and

minimize communication.

Sinnen, O. (2007). Task scheduling for parallel systems (Vol.

60): Wiley-Interscience.

Xue, J. (1997). On tiling as a loop transformation. Parallel

Processing Letters, 7(4), 409-424.

Figure 4. Experimental results, BSLS versus CPS, on four processors

Figure 5. Experimental results, BSLS versus CPS, on five processors

