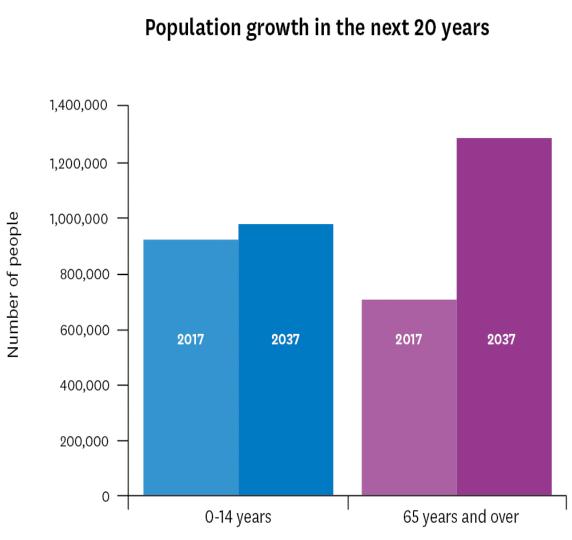
COMMUNITY-BASED ENGINEERING RESEARCH: WHY AGING NEW ZEALANDERS LIVING IN RURAL NEED BETTER TRANSPORT SERVICE?

Chan Kim, PhD (chan Kim, and Paul Ewart, PhD (paul.ewart@wintec.ac.nz)

Centre for Engineering and Industrial Design Waikato Institute of Technology, Hamilton, New Zealand

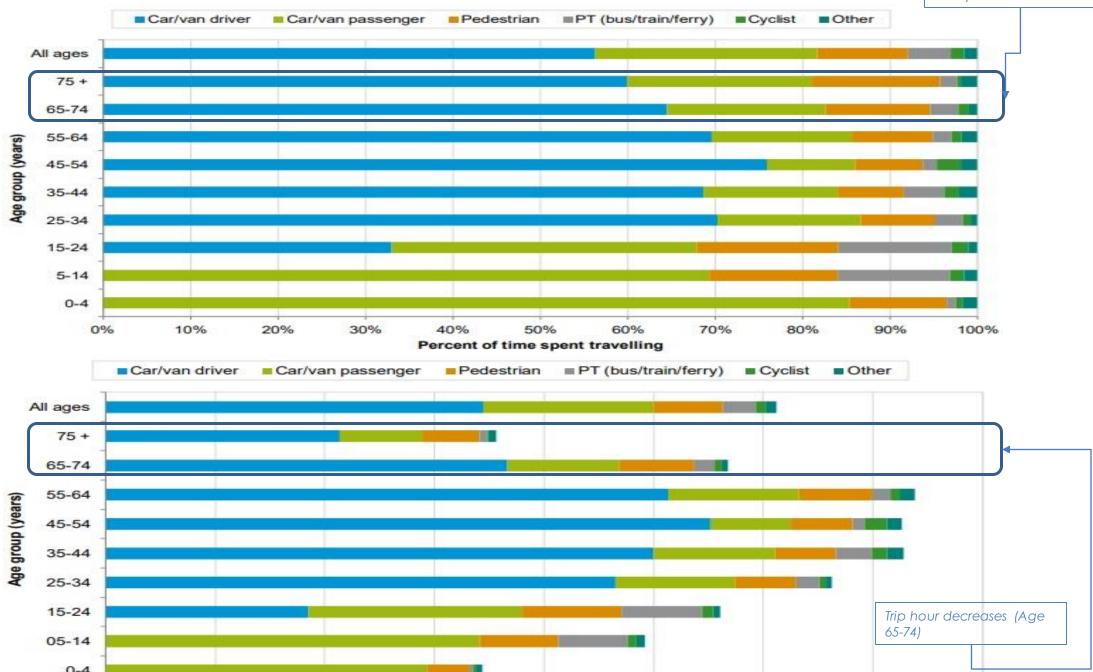
Keywords: elderly, rural area, demand responsive transport, revealed preference survey, rank-ordered logit



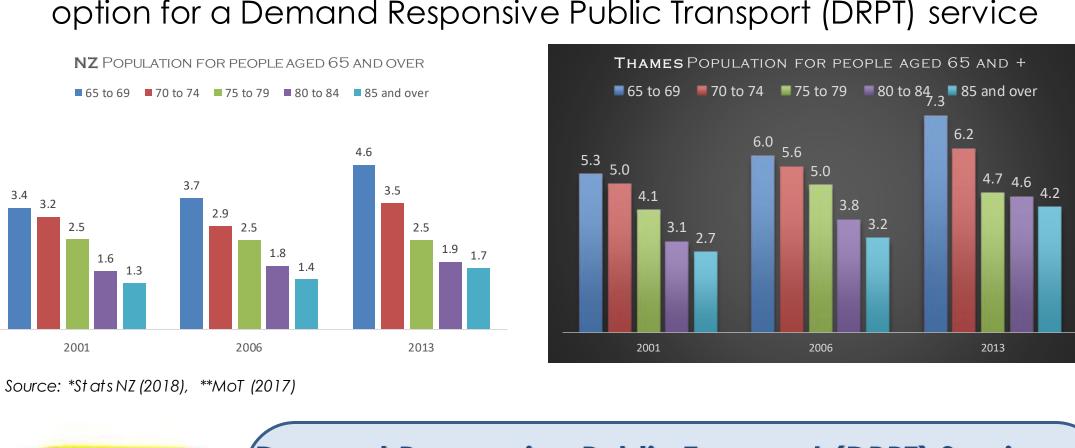
BACKGROUND

A trend of Elderly Population in NZ > The elderly population

in NZ and NZ rural is increasing > At the June of 2018,


747k people were aged 65-plus, those aged 65 years and older will roughly double in 2046 with 1.3 - 1.5 million (or 23 % of the total population, up from 12 % in 2016*).

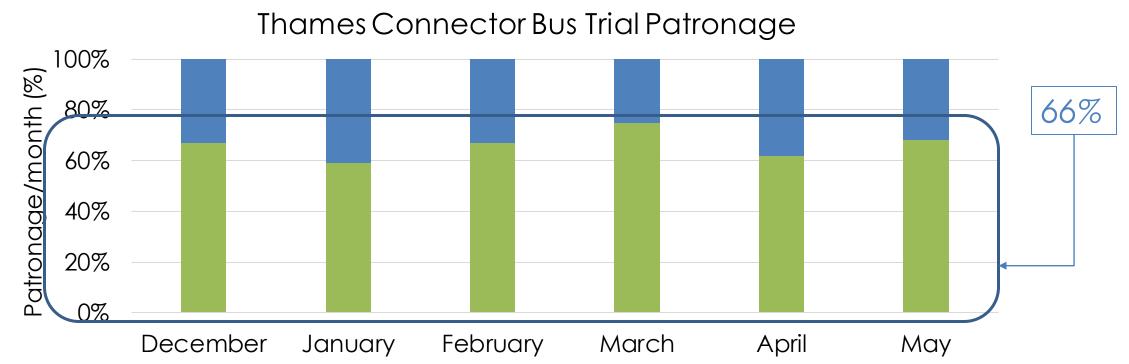
7.00


Travel Behavior: Modal Share

> After age 65, driving a vehicle declines but walking and PT use increases. The number of hours travelled per week drops dramatically** Use of PT increases (Age

Case Study

- > Thames, Waikato is a popular location to live for people aged 65 and over,
- > The study in transport for the elderly in Thames investigated the option for a Demand Responsive Public Transport (DRPT) service



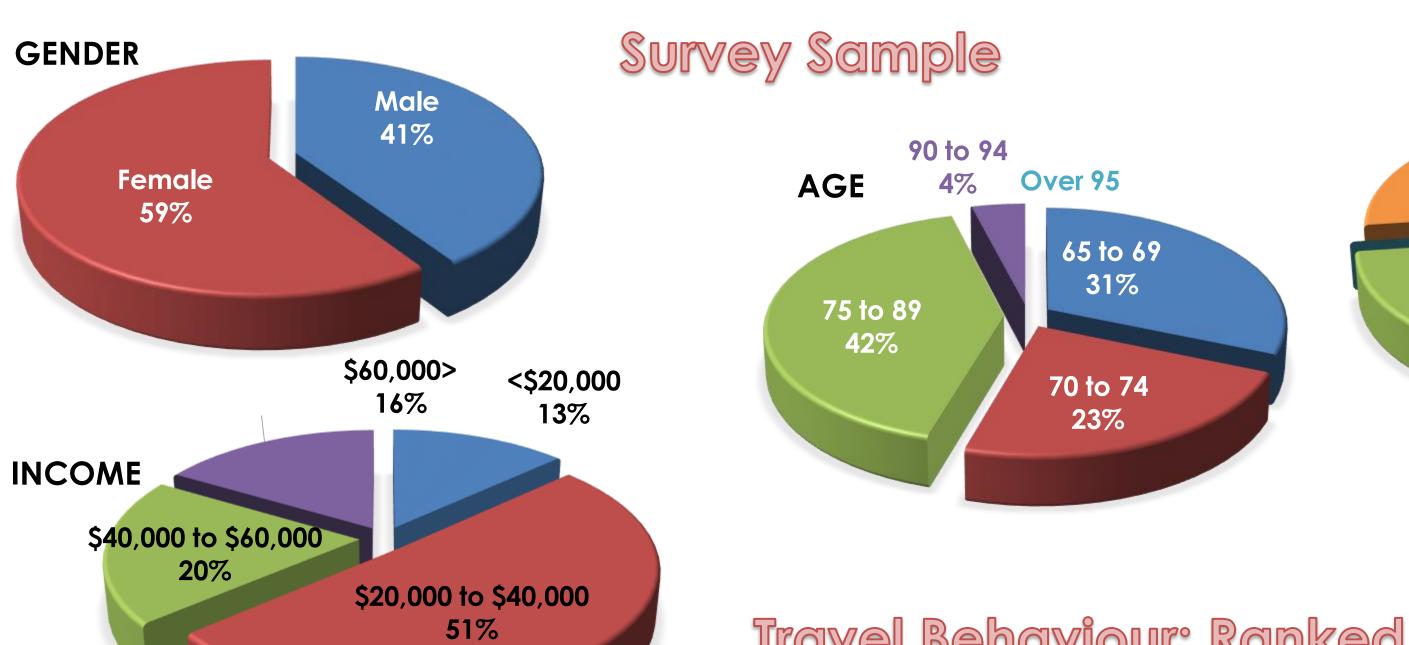
Demand Responsive Public Transport (DRPT) Service

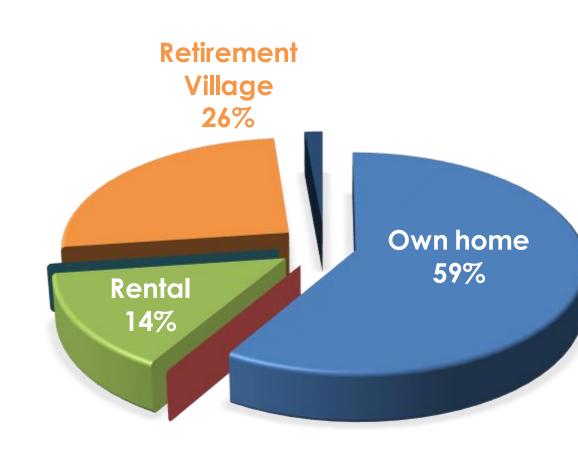
- Door to Door service
- No fixed schedule or route
- Short booking period
- Suitable for areas of low passenger demand May fully funded or partially funded
 - (i.e. U.S., U.K., Switzerland, etc.)

METHODOLOGY

> Ridership Data from the 6-month trial bus service in Thames (Urban Connector) provide that high demand from the elderly population.

- Non super gold card user (aged under 65) Super gold card users (aged 65 plus)
- ➤ In comparison, percentage (%) of bus users over age 65 in other NZ cities
 - Palmerston North: **4.8%** (50,668)
 - Whanganui: **26.4%** (38,396)
 - Feilding: 9.9% (8,686)
 - Ashhurst: 12.1% (676
- > A Revealed Preference survey completed between July and September 2018





Acknowledgements:

> Sam Edlin (Thames-Coromandel District Council)

ANALYSIS

4.03

0.32

0.13

0.52

0.15

0.07

Scooter

and Fami

RESIDENCE TYPE

Travel Behaviour: Ranked Order Logit Model

Trip Destination

Use of Mode (Overall) Mode Trip/wk ehicle

e of the Alternative Mode: Non-vehicle Owner		Domination		ROTTE		
		Shopping	1.91	1	Own ve	
Alternative Mode	Weighted Avg. (%)	Rank	Medical	0.32	5	Bus
ng (include Mobility scooter)		1	Social	1.55	2	Taxi
l/Family support	26.0	2	Recreation	0.42	3	Walking
	19.6	3	Other	0.35	4	Mobility
r Companion driver service	13.7	4	Total Avg. Trip	4.54		Friend c

Estimation of a ROL model

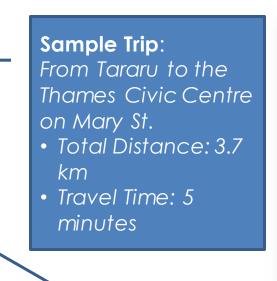
Walkir

The likelihood can be written as $Pr(U_1 > U_2 > \cdots > U_j) = Pr(U_1 > U_j, j = 1, 2, \cdots, J) \bullet Pr(U_2 > U_j, j = 3, 4, \cdots, J) \bullet Pr(U_3 > U_j, j = 1, 2, \cdots, J) \bullet Pr(U_3 > U_j, J = 1, 2, \cdots, J) \bullet P$ $4, 5, \cdots, J \Big) \cdots \bullet Pr \Big(U_{J-1} > U_J \Big) \frac{e^{V_1}}{\sum_{i=1}^{J} e^{V_j}} \bullet \frac{e^{V_2}}{\sum_{i=2}^{J} e^{V_j}} \bullet \cdots \bullet \frac{e^{V_{J-1}}}{e^{V_{J-1}} + e^{V_J}} = \prod_{j=1}^{J=1} \left[\frac{e^{V_J}}{\sum_{m=i}^{J} e^{V_m}} \right] Pr \left(U_1 > U_2 > \cdots > U_K, K \leq J \right) = \prod_{j=1}^{K} \left[\frac{e^{V_j}}{\sum_{k=i}^{K} e^{V_k}} \right] Pr \left(U_1 > U_2 > \cdots > U_K \right) Pr \left(U_1 > U_1 > U_2 > \cdots > U_K \right) Pr \left(U_1 > U_1 > U_1 > U_1 > U_1 > U_1 \right) Pr \left(U_1 > U_1 > U_1 > U_1 > U_1 > U_1 \right) Pr \left(U_1 > U_1 > U_1 > U_1 > U_1 > U_1 > U_1 \right) Pr \left(U_1 > U_1 > U_1 > U_1 > U_1 > U_1 > U_1 \right) Pr \left(U_1 > U_1 \right$

The main reason you stopped driving:

Vehicle and road factors

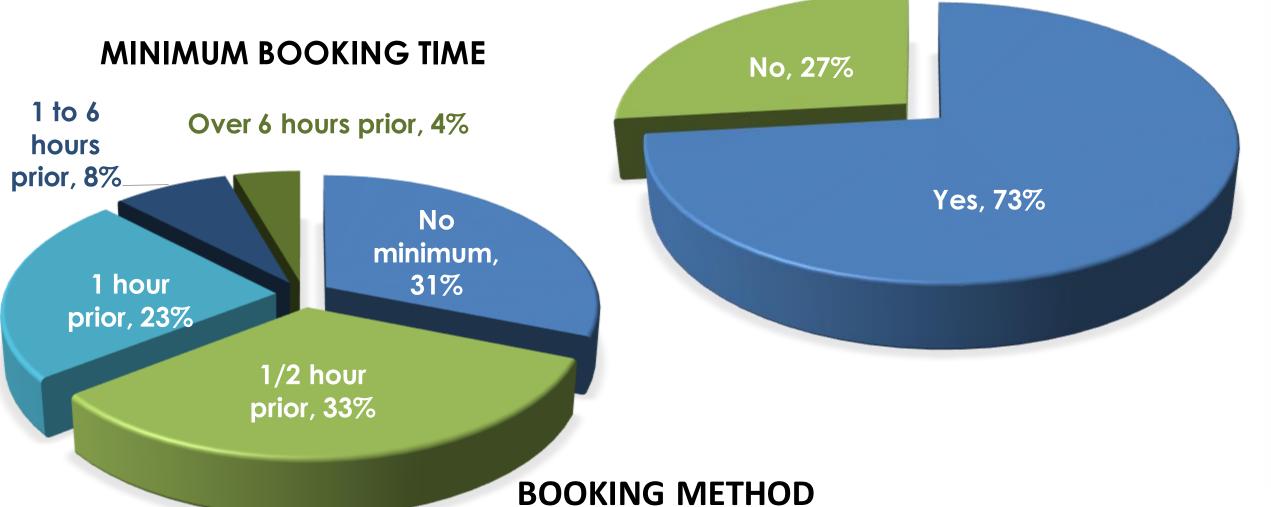
Causes	Weighted Avg. (%)	Rank
Operating costs of owning a vehicle	26.5	1
Dealing with traffic congestion	18.0	3
Poor road conditions	18.9	2
Lack of parking/difficulty parking	11.3	4
Design and comfort of your vehicle	3.3	5

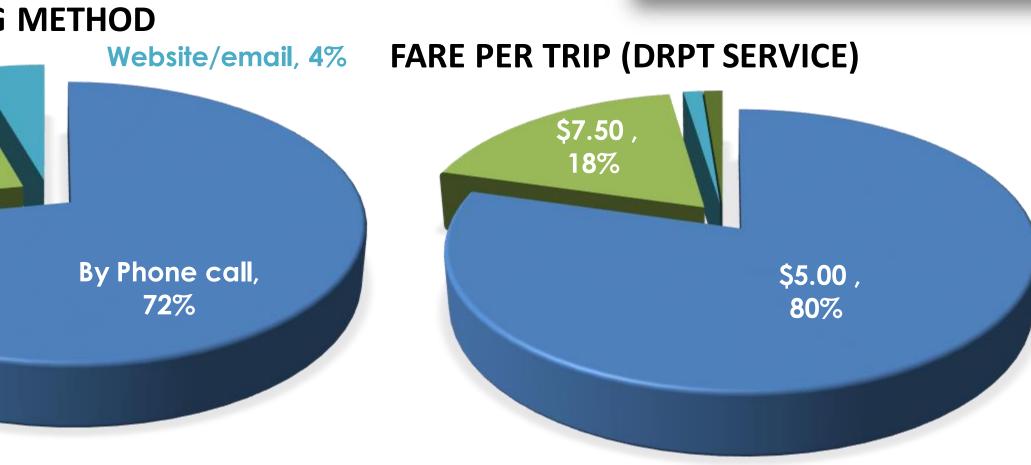


Weighted Avg. (%)	Rank
22.7	2
13.7	4
23.6	1
8.1	5
15.6	3
	22.7 13.7 23.6 8.1

Perception for use of the Public Transport: Constraints Constraints Weighted Ava (%) Rank

CONSTIGUITS	Weiginea Avg. [/0]	NULL
Accessibility (getting to the stop)	20.7	1
Difficulty boarding	16.6	3
Being able to get a seat	15.9	4
Being worried about crime	17.9	2
Public transportation is too expensive	14.1	6
Public transportation doesn't go where I need to go	15.3	5


Thames



DRTP Demand Analysis

PERCEPTION FOR THE USE OF DRPT SERVICE

DISCUSSION & CONCLUSION

- The majority of elderly surveyed would consider using a Demand Responsive PT service if they could no longer drive their vehicle.
- The preliminary research confirms that there will be a greater need for more flexible public transport options in small towns as the population ages.
- Accessibility is one of the biggest reasons why existing public transport needs to be improved to meet the growing demands for public transport for people aged over 65.
- The survey results suggest that the typical elderly user of a DRPT service in NZ rural would be: Female, Aged 75 to 89, Income \$20,000 to \$40,000, and Own their own home

FURTHER RESEARCH

Mobile

App. 24%

- Feasibility study for a DRPT service and Operational requirements of a DRPT service,
- Accessibility of a DRPT service for people that have disabilities, and
- Expansion of the study to other small rural townships