
FMIS 2019

The 8th Formal Methods for Interactive Systems workshop

Participants proceedings

Porto, October 7, 2019

FMIS 2019 Preface

Preface

This volume contains the papers presented at FMIS 2019: The 8th Formal Methods for
Interactive Systems workshop held on October 7, 2019 in Porto. The aim of the workshop
was to bring together researchers from a range of disciplines within computer science (including
HCI) and other behavioural disciplines, from both academia and industry, who are interested
in both formal methods and interactive system design.

The goal of the FMIS workshop series is to grow and sustain a network of researchers
interested in the development and application of formal methods and related verification and
analysis tools to HCI and usability aspects of ubiquitous systems. Reducing the risk of human
error in the use of interactive systems is increasingly recognised as a key objective in contexts
where safety, security, financial or similar considerations are important. These risks are of
particular concern where users are presented with novel interactive experiences through the use
of ubiquitous mobile devices in complex smart environments. Formal methods are required to
analyse these interactive situations. In such complex systems analysis and justification that
risk is reduced may depend on both qualitative and quantitative models of the system.

This volume was produced using EasyChair.

September 19, 2019 José Creissac Campos
Steve Reeves

(FMIS 2019 co-chairs)

i

FMIS 2019 Programme Committee

Programme Committee

Oana Andrei University of Glasgow
Yamine Aı̈t Ameur IRIT/INPT-ENSEEIHT
Judy Bowen University of Waikato
Antonio Cerone Nazarbayev University
David Chemouil ONERA & Université fédérale de Toulouse
Horatiu Cirstea Loria
José Creissac Campos University of Minho & HASLab/INESC TEC (co-chair)
Bruno d’Ausbourg ONERA
Alan Dix Computational Foundry, Swansea University
Stefania Gnesi CNR
Michael Harrison Newcastle University
C. Michael Holloway NASA
Kris Luyten Hasselt University
Paolo Masci National Institute of Aerospace (NIA), Hampton, VA, USA
Mieke Massink CNR-ISTI
Dominique Mery Université de Lorraine, LORIA
Philippe Palanque ICS-IRIT, University Toulouse 3
Steve Reeves University of Waikato (co-chair)
Benjamin Weyers Trier University

1

FMIS 2019 Table of Contents

Table of Contents

Examples of the application of formal methods to interactive systems: abstract 1
Michael Harrison [Invited Speaker]

A Survey on Formal Methods for Interactive Systems. 3
Pascal Béger, Sébastien Leriche and Daniel Prun

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 21
Sapna Jaidka, Steve Reeves and Judy Bowen

Fortune Nets for Fortunettes: Formal, Petri nets-based, Engineering of Feedforward for
GUI Widgets. 37
David Navarre, Philippe Palanque, Sven Coppers, Kris Luyten and Davy Vanacken

Model-Based Testing of Post-WIMP Interactions Using Object Oriented Petri-nets 53
Alexandre Canny, David Navarre, José Creissac Campos and Philippe Palanque

Preliminary Thoughts on User Interfaces for Logic-based Medical Image Analysis 69
Vincenzo Ciancia and Mieke Massink

Synthesizing Glue Code for Graphical User Interfaces from Formal Specifications 80
Keerthi Adabala and Rüdiger Ehlers

Modelling Human Reasoning in Practical Behavioral Contexts using Real-time Maude 85

Antonio Cerone and Peter Csaba Ölveczky

1

Examples of the application of formal methods
to interactive systems: abstract

Michael D. Harrison
1[0000�0002�5567�9650]

School of Computing, Newcastle University
Newcastle upon Tyne, UK

michael.harrison@ncl.ac.uk
http://www.ncl.ac.uk/computing/people/profile/michael.harrison

Abstract. Formal methods in interactive systems can be used to anal-
yse how systems support use with a clarity that is not possible with more
traditional development approaches. However, the processes involved are
complicated and do not fit well with those whose primary concern is user
interfaces. The full paper reflects on the tools that are used and the prob-
lems that hinder their accessibility and comments on tool developments
that could lead to wider use of these techniques. The role that existing
methods and tools can play in analysing interactive systems will be ex-
plored through concrete examples involving the use of the PVS theorem
proving assistant and the IVY toolset. Examples will focus on:
– the formulation and validation of models of interactive systems;
– the expression of use related requirements, particularly in the context

of usability engineering and safety analysis;
– the generation of proofs that requirements hold true and making

sense when proof fails.
Examples will be taken from existing standalone medical devices includ-
ing examples from part of a safety analysis of a device leading to product.

Keywords: Formal verification · Automated reasoning tools · Interac-
tive computing systems.

1 Summary

The use of formal methods can provide benefits in the development and analysis

of interactive systems. However many of these benefits are potential rather than

actual because of the many obstacles to their use. This is of particular significance

in the context of interactive systems because the developers and analysts of such

systems may not be computer scientists. Their focus and expertise may be the

domain in which the system is to be designed, or the role of the user and how

the user interface supports that role. Development teams can be small. This is

particularly so in the development of medical devices. The full paper explores

two specific tools that support formal methods using examples of interactive

systems, namely PVS [6] (a theorem proving assistant) and IVY [1] (a tool that

interfaces with the SMV [2] model checker).

http://www.ncl.ac.uk/computing/people/profile/michael.harrison

2 Michael D. Harrison

The exploration considers a small set of examples, all of which concern med-

ical devices. Medical devices are of particular interest for two reasons. Firstly,

they are often safety critical and use related errors are a widespread problem

for the community. Secondly the teams involved in their development are often

small. It is typical that a new medical device is built by a research team who

are focussed on the science associated with the device rather than its usability.

In the paper we explore through the examples the following issues.

– the formulation and validation of the models that are intended to capture

the key use characteristics of these devices;

– the expression of use related requirements: these requirements could be for

example design heuristics or safety requirements derived from a risk log;

– the process of proving and demonstrating that a requirement holds true of

the model and, by extension, is true of the existing or intended device.

These issues will be explored through three examples: the safety analysis

of a neonatal dialysis machine [3]; the user centred design of a pill dispenser

[4] and an infusion pump [5]. It is not intended that the paper is exhaustive

in its consideration of these issues. Instead practical examples of the use of

formal techniques are used to illustrate them in the development and analysis

of interactive systems. The full paper will be concluded by briefly considering

extensions to tools that would aid the practical use of formal tools in the context

of these examples.

References

1. Campos, J.C., Sousa, M., Alves, M.C.B., Harrison, M.D.: Formal verification of a
space system’s user interface with the IVY workbench. IEEE Transactions of Human
Machine Systems 46(2), 303–316 (2016)

2. Cimatti, A., Roveri, M., Olivetti, E., Keighren, G., Pistore, M., Roveri, M., Semprini,
S., Tchaltsev, A.: NuSMV 2.3 user manual. Tech. rep., ITC-IRST, Trento, Italy
(2007), nusmv.irst.itc.it/NuSMV/tutorial/v23/tutorial.pdf

3. Harrison, M.D., Freitas, L., Drinnan, M., Campos, J.C., Masci, P., di Maria,
C., Whitaker, M.: Formal techniques in the safety analysis of software compo-
nents of a new dialysis machine. Science of Computer Programming 175, 17
– 34 (2019). https://doi.org/https://doi.org/10.1016/j.scico.2019.02.003, http://
www.sciencedirect.com/science/article/pii/S0167642318300819

4. Harrison, M., Masci, P., Campos, J.: Formal modelling as a component of user
interface design. In: Mazzara, M., Ober, I., Salaün, G. (eds.) Software Technologies:
Applications and Foundations STAF 2018 collocated workshops (revised selected
papers). pp. 274–294. No. 11176 in Lecture Notes in Computer Science, Springer-
Verlag (2018)

5. Harrison, M., Masci, P., Campos, J.: Verification templates for the analysis of user
interface software design. IEEE Transactions on Software Engineering 45(8), 802–
822 (2019)

6. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Ka-
pur, D. (ed.) Eleventh International Conference on Automated Deduction (CADE).
Lecture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer-Verlag (1992)

nusmv.irst.itc.it/NuSMV/tutorial/v23/tutorial.pdf
https://doi.org/https://doi.org/10.1016/j.scico.2019.02.003
http://www.sciencedirect.com/science/article/pii/S0167642318300819
http://www.sciencedirect.com/science/article/pii/S0167642318300819

A Survey on Formal Methods for Interactive Systems

Pascal Béger, Sebastien Leriche, and Daniel Prun

ENAC, Université de Toulouse - France
{pascal.beger,sebastien.leriche,daniel.prun}@enac.fr

http://lii.enac.fr/

Abstract. Our research team is specialized in human-computer systems and their engineering, with
focus on interactive software systems for aeronautics (from cockpits to control towers). This context
stands out by the need for certification, such as DO-178 or ED-12. Today, formal methods are pushed
forward, as one of the best tools to achieve the verification and validation of properties, leading to the
certification of these systems.
Interactive systems are reactive computer systems that process information from their environment and
produce a representation of their internal state. They offer new rich interfaces with sophisticated inter-
actions. Their certification is a challenge, because the validation is often a human based process since
traditional formal tools are not always suitable to the verification of graphical properties in particular.
In this paper, we explore the scientific work that has been done in formal methods for interactive systems
over the last decade, in a systematic study of publications in the International Workshop on Formal
Methods for Interactive Systems. We describe an analytical framework that we apply to classify the
studied work into classes of properties and used formalisms. We then discuss the emerging findings,
mainly the lack of papers addressing the formal specification or validation of perceptibility properties.
We conclude with an overview of our future work in this area.

Keywords: interactive software · formal methods · verification · graphical properties.

1 Introduction

1.1 Aim and scope of the article

Interactive systems are reactive computer systems that process information (mouse clicks, data entries, etc.)
from their environment (other systems or human users) and produce a representation (sound notification,
visual display, etc.) of their internal state [13, 59]. They now have an increasingly important place among
modern systems in various sectors such as aeronautics, space, medical or mobile applications. These systems
offer new rich human machine interfaces with sophisticated interactions.

The preferred method for the verification and validation (V&V) of properties on interactive systems
remains largely based on successive testing sessions of prototypes, performed through various experimen-
tations involving representative end-users. For a long time, formal methods have not been very used to
the verification of interactive properties. Indeed, historically, formal methods have been developed for dis-
tributed and embedded systems. The first properties studied for software and computer systems concerned
safety (e.g. absence of unwanted events, boundedness) as well as program liveness (e.g. return to a given
state, deadlock freedom) [63]. The main methods used to verify and validate properties of systems are model
verification by model checking [25], mathematical proof [18], static analysis [43] and test processes driven
by a formal model of the system under tests.

However, more and more work is being done on the development of formal methods to interactive sys-
tems. The objective is to study how these methods can be adapted to the modelling and the verification of

http://lii.enac.fr/

properties involving human related characteristics. In particular, in the scope of critical domains such as
aeronautics, recent updates of standards used for certification strongly recommend to use formal methods
for the verification and validation of requirements of new software for aircraft cockpits ([71, 72]).

In this context, the objective of this survey is to study research activities that have been done in formal
methods for the modeling, verification and validation of interactive systems, over the last decade. The aim
is to draw a faithful picture of formalisms that are used to model interactive systems, set of properties that
are verified and formal methods applied. From this picture, the objective is to identify strengths and weak-
nesses of formal approaches for interactive systems and to identify ways of improvements. More precisely,
the survey highlights several points: What interactive related properties are studied? Which ones are more
covered and which ones are least addressed? Are there formalisms that are widely used to model systems
and study their properties? Are there any new formalisms that have emerged? Are they used on industrial
critical systems or only on small academic case studies?

1.2 Methodology

Through this survey we explore the scientific work that has been done in formal methods for interactive
systems over the last decade. For this purpose, we perform a systematic study of publications from a specific
workshop, the International Workshop on Formal Methods for Interactive Systems (FMIS). We have selected
this workshop because it covers exactly our problematic: the articles from this workshop address issues of
how formal methods can be applied to interactive system design and verification and validation of their
related properties. The workshop also focuses on general design and verification methodologies, and takes
models and human behavior under consideration. Moreover, FMIS has reached a critical mass that makes
the analysis more significative and reliable. It has taken place seven times from 2006 to 2018. Our study is
based on an exhaustive review of the literature from FMIS representing 43 articles.

As we focus on the formal study of properties related to the graphical scene of interactive systems, this
survey is based on a table of our choice that classifies the work that has been done about formalisation and
verification of properties for interactive systems.

1.3 Plan of the article

Before reviewing the work from FMIS, we present our analytical framework (2). It is composed by defi-
nitions of properties we have sorted in different classes. We also set up a nomenclature of formalisms that
have been used for the studies of the properties. From this basis, we propose an analytical grid that allows us
to synthesize the review. Then the 43 articles from all the FMIS workshops are presented and analysed (3),
analysis mainly directed by the studied properties and the ways of studying them.

The section 4 provides a synthesis of the review and highlights the issues in the research of formal
methods for interactive systems. Finally, the section 5 concludes the discussion and presents ongoing work
related to the previously highlighted issues.

2 Analytical framework

The purpose of this section is to define a framework for the analysis of the properties that have been studied
for interactive systems. In order to do that, three basic questions must be considered.

– "What properties are studied?" This question concerns the nature of properties that have been studied
and is the center of our work to determine if some properties have not been studied.

– "What formalism is being used?" This question allows us to show what formalisms can be used to study
the properties.

– "What is the case study?" This question concerns the system used as the case study to illustrate the use
of formal methods and its particularities.

We focus on these questions in order to highlight the range of interactive systems properties covered.
It provides the means used to cover these properties. Through this survey, we explore these questions by
sorting the articles by the properties studied and the means used to study those. We also provide the case
study used to illustrate the studies.

2.1 Properties

As stated in the analytical framework, we firstly drive our analysis according to the studied properties. This
paper organises interactive systems properties in four classes of our choice: user behavior [2], cognitive
principles [29], human-machine interfaces [13], security [70]. We detail these classes below.

Several articles do not directly address interactive properties and so cannot be classified in one of these
4 classes. For these specific papers, we have defined two additional categories:

– specification/formal definition: gather papers dealing with the formal modeling of a system, and pos-
sibly addressing properties related to the model itself, and not centered on the interaction.

– testing: gather papers related to the modeling of interactive systems with the objective to generate test
cases from the study of the model.

User behavior This user behavior class considers the properties related to a human user. The properties from
this class are about user’s actions, user’s expectations about the system, user’s objectives and restrictions.

– A user goal is a list of sub objectives that a user has to perform to achieve a greater objective related to
the purposes of the system used. This goal can consist on a single task or an overall use case.
"Insert the card", "authenticate" and "choose the amount of money" are subgoals of "withdraw money".

– User privileges are a way to prevent a user with an unauthorized level of accreditation to perform goals
the user should not.
Example: It is only possible to access our e-mails if we are connected to our e-mail system.

– The user interpretation can be seen as the set of assumptions of the user about the system. It can lead
users to adapt their behavior in accordance with these assumptions.
For example, we are used to the shortcut Ctrl+C in order to copy some text. A novice user of a terminal
could use it to copy text and close the running application because the functionality is not the same.

– The user attention is defined as the ability of the user to focus on a specific activity without being
disturbed by irrelevant informations.
This can be seen when driving a car, the driver is focused on traffic signs, on road traffic, etc.

– The user experience concerns the knowledge of the user about the system. This knowledge can come
from a previous use of the system or a study of the system before using it. This experience can have an
impact on user interpretation.
The example given in user interpretation also illustrates the user experience: an experienced user of a
terminal would not make mistakes with the Ctrl+C functionality.

Cognitive principles This cognitive principles class considers the properties related to cognitive sciences.
The properties from this class are about the human user cognitive salience and load.

– The cognitive load is related to the task performed by the user and more specifically to its complexity.
It is possible to define two types of cognitive load: intrinsic (complexity of the task) and extraneous
(complexity due to the context and distractors).
For example, a user may lose attention while interacting with too rich a graphical scene.

– The cognitive salience represents a user’s adherence to an idea. While performing an action, it depends
on the action sensory salience, its procedural cueing and the cognitive load related to the task.
A user will be more focused on an action more in line with his convictions.

Human-machine interfaces In the human-machine interfaces properties class we consider the new proper-
ties that have arrived with these new systems. These properties are mainly specific to the problems induced
by the display such as verifying the right display of informations or being aware of the latency that can
appear between user actions and the display of informations.

– The latency is a well-known issue in rich interfaces. It concerns the delay between interactions with an
application and the return of informations from it.
If a computer processes several actions at the same time, it will take a few seconds to start a web browser.

– the consistency represents a system constant behavior whether for a display or a functionality regardless
the current mode of the system.
It can be seen as the use of same terminology for functions ("Exit" or "Quit" in order to define a function
"close a window").

– The predictability is the user’s ability to predict the future behavior of the system from its actual state
and the way the user will interact with it.
When closing a word processor with an unsaved document, a user knows that a pop-up will show to ask
what to do between saving the document, canceling the closing or closing without saving.

– ISO 9241-11 [79] defines the usability as "the extent to which a product can be used by specified users
to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use."
It is possible to improve the usability of an "accept/decline" window by adding symbols related to the
two notions such as Xfor accept and ⇥ for decline.

– The visual perceptibility is based on different properties such as the superposition of components, the
distinction of shapes and colours.
For example, even if a red text is above a red shape, the text will not be perceptible.

Security This security class considers the properties related to computer security such as the prevention of
threats and the link between the user behavior and the possible threats.

– The integrity property states that, for a system that may be exposed to threats, hypothesis of the user
about the application are correct and the reverse is also true.
When we log in interfaces with two text fields, if the fields username and password are not in the
expected locations, we could type the password in the clear field.

– The threats property focuses in defining the differents threats that may be a risk for the system.
We can note, for example, data leaking or data manipulation.

2.2 Nomenclature of formalisms

This section will introduce formalisms and formal methods that have been used by FMIS authors in order to
formalize and apply verification techniques on the properties defined in the last section. We will define the
basic semantic and the properties inherent to these formalisms.

Process algebra Baeten [7] gives the history and the definition of process algebra. The author also gives
examples of some formalisms from process algebra such as Calculus of Communicating Systems (CCS) or
Communicating Sequential Processes (CSP). We can resume from this paper that process algebra is a set of
algebraic means used to study and define the parallel systems behavior.

Authors from the FMIS workshop used formalisms from process algebra such as the CWB-NC [34]
syntax for the Hoare’s CSP notation [48], Language Of Temporal Ordering Specification (LOTOS) [51],
probabilistic ⇡-calculus [61], applied ⇡-calculus [69], Performance Evaluation Process Algebra (PEPA) [47].

Specification language A specification language is a formal language that can be used to make formal
descriptions of systems. It allows a user to analyze a system or its requirements and thus to improve its
design.

Authors from the FMIS workshop used specification languages such as SAL [58], Z [78], µCharts [41],
Spec# [11], Promela [49], PVS [73], Higher-Order Processes Specification (HOPS) [36].

Refinement A program refinement consists in the concretisation of a more abstract description of a system.
The aim of this method is to verify properties in an abstract level of the description then to concretise this
level while conserving the verified properties. These steps have to be done until the concrete description of
the system is obtained.

Authors from the FMIS workshop used refinements processes with models such as B-method [3] or with
specification languages such as Z and µCharts.

Transition systems Transition systems [8] consist in directed graphs composed of states, represented by
nodes, and transitions, represented by edges. A state represents an instant in the system behavior or for a
program the current value of all the variables and the current state of the program. Crossing a transition
involves a change of state.

Authors from the FMIS workshop used transition systems formalisms such as UPPAAL [15], Petri nets
(PN) [35], ICO models [60], finite state automata (FSA), Input/Output labeled transition system (IOLTS).

Temporal logic Properties to be verified are often expressed in the form of temporal logic formulas [42].
These formulas are based on Boolean combiners, time combiners and for some logics on path quantifiers.

Authors from the FMIS workshop used temporal logics such as computation tree logic (CTL) and linear
temporal logic (LTL) [25].

3 Review

Here, we review the state of the art of formal methods applied to interactive systems. We consider research
work that have been presented in the International Workshop on Formal Methods for Interactive Systems.

Our aim is to present the properties that have been studied with formal methods. From this and the
questions that we asked in the section 2, we base our analysis on the grid presented in the table 6.

This grid highlights the coverage of properties depending on the formalisms. The categories formal
definition/specification and testing are not interactive systems properties. However, we want to present how
articles address those with formal methods. This explains the fact that there is a double vertical line in the
grid. Our work addresses the visual perceptibility property from the HMI class. We highlight this by setting
the perceptibility in italic beside the HMI class, separated by a dashed line.

3.1 User behavior

The table 1 summarizes the studies of the user behavior class of properties. It sorts the papers according to
the properties studied (goals, privileges, interpretation, attention, emotion and experience) and formalisms
used.

Table 1: Study of the user behavior class of properties in the FMIS workshops

Goals Privileges Interpretation Attention Emotion Experience
(PA) CWB-NC [32] [32]
(PA) CSP [30] [30] [30]
(PA) LOTOS [80]
(PA) PEPA [33]
(SL) SAL [66] [65] [66] [67]
(SL) HOPS [37]
(other) HTDL [31] [31]
ad-hoc formalism [19]

User goals Cerone and Elbegbayan [32] define user goals in the use of a web-based interface that features
a discussion forum and a member list. Those are defined with the CWB-NC syntax for CSP from process
algebra. These definitions allow authors to model more precisely the attended and unattended use cases.

Rukšėnas et al. [66] address the use of an authentification interface with two textboxes (user name and
password). They define user goals with the specification language SAL through the definition of a cognitive
architecture of user behavior. It allows authors to define the actions a user can do. Rukšėnas et al. [65] further
explore the notion of user goals through their cognitive architecture.

Cerone [30] bases his work on the study of two use cases: a driving user and a user interacting with an
ATM. He models the user goals with the Hoare’s notation for describing CSP (process algebra). It allows
him to study cognitive activities such as closure.

Dittmar and Schachtschneider [37] use HOPS (specification language) models to define user tasks and
actions while solving a puzzle.

User privileges Cerone and Elbegbayan [32] define user privileges with the CWB-NC syntax for CSP.
Thus, authors can model wich actions logged or non-logged users are allowed to do. This allows authors to
constrain the user behavior by adding new properties in the web interface model.

User interpretation Rukšėnas et al. [66] address the user interpretation of an authentification interface.
They define it with SAL through the definition of a cognitive architecture of user behavior. It allows authors

to highlight the risk for the user of misunderstanding the interface depending on the display of the two
textboxes. Rukšėnas and Curzon [67] study the plausible behavior of users interacting with number entry on
infusion pumps. They assume that users have their own beliefs about the incremental values. They separately
model the users behavior depending on their interpretation and the constraint on cognitive mismatches with
LTL and the SAL model checker.

User attention and user experience Su et al. [80] study the temporal attentional limitation in the presence
of stimuli on stimulus rich reactive interfaces. The cognitive model of human operators is defined with
LOTOS (process algebra). The model of SRRI is based on studies of an AB task [39]. This work presents
simulation results focusing on the performance of the interface in user attention.

Cerone [30] addresses user’s expectations, which relies on user attention and user experience. He studies
cognitive activities such as closure, contention scheduling and attention activation. He models those with the
Hoare’s notation for describing CSP (process algebra).

Cerone and Zhao [33] use the process algebra PEPA to model a three-way junction with no traffic lights
and a traffic situation. They study the user experience in driving in such junctions. They use the PEPA Eclipse
plug-in to analyse the model and determine for example the probability of possible collision.

Cerone [31] proposes a cognitive architecture for the modelling of human behavior. This work presents
the Human Task Description Language (HTDL). He uses it to model properties related to user behavior such
as the automatic (everyday tasks) and deliberate (driven by a goal) control and the human learning, attention
and experience.

User emotion Bonnefon et al. [19] use their logical framework, an ad-hoc formalism, to model several emo-
tions and the notion of trust. Among the emotions there is joy/distress, hope/fear, satisfaction/disappointment
and fear-confirmed/relief. They also model the relation between trust and emotions.

3.2 Cognitive principles

The table 2 summarizes the studies of the cognitive principles class of properties. It sorts the papers according
to the properties studied (salience and load) and formalisms used.

Table 2: Study of the cognitive principles class of properties in the FMIS workshops

Salience Load
(SL) SAL [65] [50] [65] [50]
(other) GUM [50] [50]

Rukšėnas et al. [65] define two cognitive principles, salience and cognitive load. They add those to their
SAL cognitive architecture. The authors also define the link between these two principles. They illustrate
these principles through the case study of a Fire Engine Dispatch Task.

Huang et al. [50] try to see if their Generic User Model (GUM) can encapsulate all the cognitive princi-
ples presented in the Doughnut Machine Experiment [4].

3.3 Human machine interfaces

The table 3 summarizes the studies of the HMI class of properties. It sorts the papers according to the
properties studied (consistency, predictability, latency and usability) and formalisms used.

Table 3: Study of the HMI class of properties in the FMIS workshops

Consistency Predictability Latency Usability Perceptibility
(SL) SAL [56] [66] [65]
(SL) PVS [45] [46]
(SL/Re) µCharts [22]
(SL/Re) Z [21]
(TS) IOLTS [14]
(TL) LTL [14] [65]
(TL) CTL [45] [27]
(other) Tree based WCET [54]

Consistency Bowen and Reeves [21] use their presentation models and refinement processes with Z to
check the equivalence and the consistency between two UI designs. The presentation models allow them to
ensure that controls with the same function have the same name and conversely.

Beckert and Beuster [14] provide an IOLTS model of a text-based application to guarantee consistency
constraints. Their first model does not satisfy consistency constraints. They refine this model in order to
satisfy the consistency constraints.

Campos and Harrison [27] provide consistency a formal definition of consistency of the Alaris GP Volu-
metric Pump interface in CTL. The global consistency includes: the role and visibility of modes, the relation
between naming and purpose of functions, consistency of behavior of the data entry keys. They also present
a part of a MAL specification of the Alarais GP infusion pump.

Harrison et al. [45] explore the consistency in the use of the soft function keys of infusion pumps through
the use of MAL models translated into PVS. They define consistency properties with CTL and translate those
into PVS theorems.

Harrison et al. [46] create a model of a pill dispenser from a specification in PVS. They use this specifi-
cation with the PVSio-web tool to study the consistency of possible actions.

Predictability Masci et al. [56] analyse the predictability of the number entry system of Alaris GP and
B-Braun Infusomat Space infusion pumps. They use SAL specifications to specify the predictability of the
B-Braun number entry system.

Latency Leriche et al. [54] explore the possibility of using Worst-Case Execution-Time [64] based on trees
to study the latency for interactive systems. They also present some works that have been done with graphs
of activation to model interactive systems.

Usability Rukšėnas et al. [66] use their user behavior model in SAL to check usability properties of an
authentification interface. They check that the property "the user eventually achieves the perceived goal" is
satisfied. Rukšėnas et al. [65] further explore the use of their user model with SAL and LTL properties. They
check that the property "the user eventually achieves the main goal" is satisfied in the Fire Engine Dispatch
Task.

Bowen and Reeves [22] present a way of applying the specification language µCharts and efinement
processes to UI designs. They use presentation models to compare two UI designs and if these UI maintain
usability. They also informally describe the refinement process related to UI design.

3.4 Security

The table 4 summarizes the studies of security class of properties. It sorts the papers according to the prop-
erties studied (integrity, usability errors and threats) and formalisms used.

Table 4: Study of the security class of properties in the FMIS workshops

Integrity Usability errors Threats
(SL) SAL [66]
(TS) IOLTS [14]
(TL) LTL [14]
(other) BDMP [52]
others/ad-hoc [6] [6]

Rukšėnas et al. [66] check the risk of security breach in the authentification interface with SAL proper-
ties. This highlights the fact that user interpretation can impact the security by entering the password in the
wrong textbox for example.

Beckert and Beuster [14] produce a generic IOLTS (transition system) model of a text-based application.
They use LTL to describe the properties of components and interpret them with IOLTS. The model is refined
to guarantee integrity and to consider the problem of multi-input (if the user enters again a data if the system
has not yet processed the last one) risking security breaches.

Arapinis et al. [6] present security properties related to the use of the MATCH (Mobilising Advanced
Technology for Care at Home) food delivery system. They define these properties by using different for-
malisms such as the access control language RW and temporal logic (LTL, TCTL, PCTL).

Johnson [52] studies security properties in terms of threats that may occur on Global Navigation Satellite
Systems (GNSS). He models GNSS with Boolean Driven Markov Processes (BDMP) and integrate security
threats to the model.

3.5 Specification/formal definition and testing

The table 5 summarizes the studies of the specification/formal definition and testing classes. It sorts the
papers according to the case (specification/formal definition and testing) and formalisms used. This section
allows us to present different systems used as case studies.

The references concern the articles that address the formal definition or specification of systems. These
articles do not cover the properties previously presented. We only present in this section these articles.

Specification/formal definition We sort the articles only focused in specification/formal definition by for-
malism used.

Process algebra Barbosa et al. [10] represent an air traffic control system with a control tower and three
aircrafts as CNUCE interactors. They use ad-hoc formalism, a generic approach to process algebra, to define
this representation.

Table 5: Study of the specification/formal definition and testing classes in the FMIS workshops

Formal definition Testing
(PA) CSP [30]
(PA) LOTOS [10]

(PA) ⇡-calculus [6]
(PA) Prob. ⇡-calc. [5]

(PA) PEPA [33]
(PA) TCBS’ [16]

(SL) SAL [56] [12]

(SL) Spec# [74]
(SL) PVS [55] [45] [62] [46]
(SL) Promela [26]

(SL) HOPS [37]
(SL/Re) µCharts [22]
(SL/Re) Z [21] [23] [23]
(Re) B/event-B [28] [68] [40]

(TS) FSM [81]

(TS) UPPAAL [44]

(TS) Colored PN [75]

Formal definition Testing
(TS) GTS [83]

(TS) FSA [82]

(TS) Event act. graph [54]
(TS) ICO [75]

(TL) LTL [6] [26]

(TL) CTL [45]
(other) SAT [26]

(other) Mark. proc. [5]

(other) MAL [27] [45]
(other) GUM [50]
(other) BDMP [52]
(tool) Spec explorer [74]
(tool) FEST [74]
(tool) SMT solver [23]
(tool) PVSio web [62] [46]

others / ad-hoc [76] [17] [38] [6]
[30] [20] [81] [9]

Anderson and Ciobanu [5] builds a Markov Decision Process abstraction of a program specification
expressed with a probabilistic process algebra (using ⇡-calculus). The abstraction is then used to check the
structure of specification, analyze the long-term stability of the system, and provide guidance to improve the
specifications if they are found to be unstable.

Bhandal et al. [16] present the language TCBS’, strongly based on the Timed Calculus of Broadcasting
Systems (TCBS). They give a formal model of a coordination model, the Comhordú system, in this language.

Specification language Calder et al. [26] study the MATCH Activity Monitor (MAM), an event driven
rule-based pervasive system. They model separately the system behavior and its configuration (rule set) with
Promela. They derive Promela rules in LTL properties to check redundant rule with the model checker SPIN.

Bowen and Hinze [20] present early stages work using presentation models to design a tourist informa-
tion system. This system displays a map on a mobile support (smartphone).

Bass et al. [12] specify in SAL the three subsystems of the A320 Speed Protection: automation, airplane
and pilots. This interactive hybrid system has the potential to provide an automation surprise to a user.

Masci et al. [55] specify the DiCoT’s information flow model by using PVS. They use three modelling
concepts (system state, activities, task) for this specification. The authors use the example of the London
Ambulance Service to illustrate their work.

Refinement Cansell et al. [28] specify an interface of e-voting corresponding to the Single Transferable Vote
model without the counting algorithm. This is done by using the B method and a refinement process.

Rukšėnas et al. [68] study the global requirements related to data entry interfaces of infusion pumps.
They use Event-B specifications and refinement processes with the Rodin platform to specify these require-
ments. These refinement processes allow the authors to check if the Alaris GB infusion pump number entry
specification validate the global requirements.

Geniet and Singh [40] study an HMI composed by graphical components in form of widgets. They use
the Event-B modelling language and refinement processes to model the system and analyse its behavior.

Transition system Harrison et al. [44] model the GAUDI system [53] with UPPAAL. Through the UPPAAL
model, the authors can explore use cases scenario and check reachability properties for example.

Westergaard [83] uses game transition systems to define visualisations of the behavior of formal models.
The example of an interoperability protocol for mobile ad-hoc networks to highlight the use of visualisations.

Thimbleby and Gimblett [81] model the interactions possibilities with key data entry of infusion pumps.
They use FSM and specify those with regular expressions to model the interactions.

Silva et al. [75] formally define a system and its WIMP and Post-WIMP interactions with ICO models
and colored Petri nets. These models allow them to analyse the properties inherent to the formalisms: place
transitions invariants, liveness and fairness, and reachability.

Turner et al. [82] generate presentation models describing tasks and widgets based interactions sequences
of an infusion pump. It is composed by five buttons (Up, Down, YesStart, NoStop, OnOff) and a display
allowing interactions with the user. They use FSA to model these sequences.

Others Bhattacharya et al. [17] model soft keyboards (on-screen keyboards) with scanning and use the
Fitts-Digraph model [77] to evaluate the performance of their model and the system.

Sinnig et al. [76] describe a new formalism based on sets of partially ordered sets. They use it to formally
define use cases and task models.

Dix et al. [38] use an ad-hoc formalism to model physical devices (switches, electric kettle, etc.) logical
states and their digital effects in another model.

Oladimeji et al. [62] present PVSio-web, a tool which extends the PVSio component of PVS with a
graphical environment. They demonstrate its use by prototyping the data entry system of infusion pumps.

Banach et al. [9] consider using an Event-B model in conjunction with an SMT solver in order to proof
some invariants on a hardware based components, dedicated to the acquisition and fusion of inputs from
various sensors to a visually impaired and blind person’s white cane (INSPEX project).

Testing Silva et al. [74] highlight a way of testing model-based graphical user interfaces. The testing process
presented is as follows: a FSM model called Presentation Task Sets (PTS) is generated from a task model
(CTT) with the TERESA tool [57], a Spec# oracle is generated from the FSM model with their Task to
Oracle Mapping (TOM) tool, then a testing framework is used to test the system against the oracle.

Bowen and Reeves [23] use the specification language Z for specifying a calendar application. They
explore the way to apply testing processes on this application. They use their presentation and interaction
models to derive tests such as ensuring that the relevant widgets exist in the appropriate states and ensuring
that the widgets have the required behaviors.

4 Findings

Through this survey, we have explored the study of interactive systems with formal methods. Several classes
of properties have been studied and cover different aspects of interactions.

The table 6 summarizes the studies of the articles from the International Workshop on Formal Methods
for Interactive Systems that has taken place seven times from 2006 to 2018. It gives a distribution of the
articles in our analytical grid. We note: X: 1-5 articles; XX: 6-10 articles; XXX: 10+ articles.

Table 6: Study of interactive systems properties in the FMIS workshops

User behavior Cognitive pr. HMI
Perceptibility

HMI
Others Security Formal def. Testing

Process algebra X XX
Spec. language X X XX X XXX X
Refinement X X X
Transition systems X X X XX
Temporal logic X X X X
Other / ad-hoc X X X X XX X

High proportion of works on formal definitions and specifications We highlight the high proportion of
articles that address the formal definition and the specification of interactive systems (classified in "Formal
def." column of table 6). Among the 43 articles from the FMIS workshops, 34 are related to this aspect
(representing approximately 80%). More than the half of those specifically address the formal definition of
properties inherent to the formalisms used (invariant for B, reachability for transition systems, etc.).

Perceptibility unstudied We can note that even if several properties related to HMI have been studied, no
paper addresses perceptibility properties (cf. "Perceptibility" column). In the FMIS workshops, we have not
spotted studies addressing visual, sound or haptic based interactions.

Common formalisms If we look at the formalisms used (table 5), it appears that some are in the majority.
We can see that PVS and SAL are the most widely used specification languages. Over the 14 articles that

use specification languages, we find that SAL is the most used with 5 articles using it. PVS is also widely
used with 4 articles using it. Those two cover more than the half of the articles using specification language.

B and event-B models are still the most used for refinement processes. 6 articles present refinement
processes and half of those use B and event-B models. We find 2 articles using Z and 1 article using µCharts.

New formalisms During this analysis, we have seen some formalisms close to the nomenclature we have
set (see section 2.2). But other formalisms could not be easyly classified in one of the proposed families. We
identified 8 papers that use ad-hoc formalisms or formalisms out of the nomenclature.

In those we find, for example, the formal definition of task models and use cases by using an ad-hoc
formalism based on sets of partially ordered sets. We also find the modelling of several physical devices
with a new and ad-hoc formalism. Another paper presents the formal definition of different emotions by
using an ad-hoc formalism. An article presents security properties and the different means (access control
language RW, ProVerif’s query language, applied ⇡-calculus) of formalising those.

Maturity of case studies A main case study is frequently presented: the "infusion pump" system. Other
systems are presented and considered as "textbook" cases, representing more than half of the papers.

The infusion pump is a safety critical medical device and is used by 7 out of 43 articles. 3 of those study
the data part of the whole system by modelling it and validate some properties on a sub-system only. 3 other
articles study the full system. They model the final device or its specification in order to check whether
the device or its specification validate the global requirements of infusion pump. The last article studies the

possible interactions between a user and the system. They model those in the form of interaction sequences
corresponding to the human user tasks.

This approach demonstrated the feasibility of the proposed methods but remains limited. We note that
even if an infusion pump is a safety critical system, the studies made for this system do not necessarily
address safety critical aspects. Indeed, only 3 articles focus on the full system and its certification oriented
requirements. Only those demonstrate the scalability of the formalisms used.

16 out of 43 articles focus on "textbook" cases and address the user interface part (web application,
smartphone application, e-voting system, etc.). Those allow authors to easily illustrate the use of several
formal methods and the properties inherent to those. The systems are modelled, several properties, inherent
to the formalisms or to the systems, are studied. However, these articles only illustrate the formal methods
and do not allow authors to demonstrate the potential scalability of these formal methods.

5 Conclusion

Aim and contribution of this article The aim of this article is to review different research work on formal
methods applied to interactive systems. The overall contribution is to provide a review of the literature, 43
articles, from the International Workshop on Formal Methods for Interactive Systems. This workshop took
place seven times from 2006 to 2018. First we propose an analytical framework based on a few questions.
Then we present several properties of interactive systems and classify them. We set a classic nomenclature
of formalisms. This analytical framework is provided with an analysis grid of our own. Those highlight the
following points: formalisms used, properties studied, case study used to illustrate the analysis. Finally, we
highlight the findings and the outgoing issues.

Discussion Interactive systems are increasingly used in several sectors and propose several kinds of interac-
tions with human users. The interactions can be from the system to the user by using sound notifications or
display notifications in order to provide information to the user about the actual internal state of the system.
They can also be from the user to the system with many interaction solutions such as mouse clicks, data
entries with keyboards or buttons on the system or soft keyboards and buttons on the display of the system
interface. All these interactions are source of new challenges when when the objective is to perform the
formal verification and validation of their related properties.

During the last decade, a substantial work has been done in order to study how formalisms and methods
can be applied to interactive system. A lot of them have demonstrated that it is possible to take into account
a lot of classes of properties. High level properties such as those related to the tasks the user may accomplish
or those related to the abstract interface have been studied. The classical formalisms relying on state and
transition paradigm can be easily used to model these elements. However, properties related to the concrete
part of the interface (involving characteristics of the graphical scene) remain largely uncovered by studies.
As we highlighted in the section 4, we note that the properties related to the perceptibility have not yet been
studied. This is not a real surprise: these properties require to model characteristics of the system which are
not traditionaly handled by formal models: color of graphical objects, forms, dimension, visibility, collision
etc. Modeling them remains a big challenge.

Perspectives Our research team works in the aeronautics sector. Thus, we focus on interactive and critical
systems related to this sector. Interfaces with a very rich graphical scene are becoming increasingly important

in aircraft cockpits. In this context, we develop a reactive language, Smala1, allowing us to develop interfaces
and interactions at the same level.

The issue related to visual perceptibility properties is then important in our opinion. In Béger et al. [24]
we propose elements for formalising graphical properties. We set three basic properties that compose the
node of our formalism: the display order depending on the display layer of graphical elements, the intersec-
tion depending on the domain of graphical elements and the colour equality. We also present a scene graph
we extract from the Smala source code. It models interactive systems and their graphical interface in a new
way. It also gives information about graphical elements and their variables (position, colour, opacity, etc.).

From those, we can formally define graphical requirements for an aeronautic system specified in a stan-
dard (ED-143 [1]). The formalism defines requirements such as the colour equality/inequality, the autho-
rized/unauthorized positions and the display order. The scene graph defines requirements we can not write
with our formalism such as the shape of graphical elements.

We aim at defining new graphical properties in order to express with our formalism requirements re-
lated to the shape and the relative positions of graphical elements. In order to automatically validate the
requirements, we want to link our formalism to the Smala source code by using code annotations.

Acknowledgments

This work is partly funded by the ANR project FORMEDICIS, ANR-16-CE25-0007.

References

1. Ed 143 - minimum operational performance standards for traffic alert and collision avoidance system ii
(tcas ii) (April 2013)

2. A Bargh, J.: The Four Horsemen of Automaticity: Awareness, Efficiency, Intention, and Control in
Social Cognition., vol. 2 (01 1994)

3. Abrial, J.R.: The B-book: Assigning Programs to Meanings. Cambridge University Press, New York,
NY, USA (1996)

4. Ament, M., Cox, A., Blandford, A., Brumby, D.: Working memory load affects device-specific but not
task-specific error rate. CogSci 2010: Proceedings of the Annual Conference of the Cognitive Science
Society pp. 91 – 96 (2010)

5. Anderson, H., Ciobanu, G.: Markov abstractions for probabilistic pi-calculus. Electronic Communica-
tions of the EASST 22 (01 2009)

6. Arapinis, M., Calder, M., Denis, L., Fisher, M., Gray, P., Konur, S., Miller, A., Ritter, E., Ryan, M.,
Schewe, S., Unsworth, C., Yasmin, R.: Towards the verification of pervasive systems. Electronic Com-
munications of the EASST 22 (01 2009)

7. Baeten, J.: A brief history of process algebra. Theoretical Computer Science 335(2), 131 – 146 (2005),
process Algebra

8. Baier, C., Katoen, J.P.: Principles of Model Checking (Representation and Mind Series). The MIT Press
(2008)

9. Banach, R., Razavi, J., Debicki, O., Mareau, N., Lesecq, S., Foucault, J.: Application of formal methods
in the inspex smart systems integration project. In: FMIS 2018 (5 2018)

1 http://smala.io/

http://smala.io/

10. Barbosa, M.A., Barbosa, L.S., Campos, J.C.: Towards a coordination model for interactive systems.
Electronic Notes in Theoretical Computer Science 183, 89 – 103 (2007), proceedings of the First Inter-
national Workshop on Formal Methods for Interactive Systems

11. Barnett, M., and: The spec# programming system: An overview. In: CASSIS 2004, Construction
and Analysis of Safe, Secure and Interoperable Smart devices. Lecture Notes in Computer Science,
vol. 3362, pp. 49–69. Springer (January 2005)

12. Bass, E.J., Feigh, K.M., Gunter, E., Rushby, J.: Formal modeling and analysis for interactive hybrid
systems 45 (01 2011)

13. Beaudouin-Lafon, M.: Designing interaction, not interfaces. In: Proceedings of the Working Conference
on Advanced Visual Interfaces. pp. 15–22. AVI ’04, ACM, New York, NY, USA (2004)

14. Beckert, B., Beuster, G.: Guaranteeing consistency in text-based human-computer-interaction (2007),
proceedings of the First International Workshop on Formal Methods for Interactive Systems

15. Behrmann, G., David, A., Larsen, K.G.: A Tutorial on Uppaal, pp. 200–236. Springer Berlin Heidelberg,
Berlin, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30080-9_7

16. Bhandal, C., Bouroche, M., Hughes, A.: A process algebraic description of a temporal wireless network
protocol 45 (01 2011)

17. Bhattacharya, S., Basu, A., Samanta, D., Bhattacherjee, S., Srivatava, A.: Some issues in modeling the
performance of soft keyboards with scanning (2007), proceedings of the First International Workshop
on Formal Methods for Interactive Systems

18. Boldo, S., Lelay, C., Melquiond, G.: Formalization of Real Analysis: A Survey of Proof Assistants and
Libraries. Mathematical Structures in Computer Science 26(7), 1196–1233 (Oct 2016)

19. Bonnefon, J.F., Longin, D., Nguyen, M.H.: A logical framework for trust-related emotions. Electronic
Communications of the EASST 22 (01 2009)

20. Bowen, J., Hinze, A.: Supporting mobile application development with model-driven emulation 45 (01
2011)

21. Bowen, J., Reeves, S.: Formal models for informal gui designs. Electronic Notes in Theoretical Com-
puter Science 183, 57 – 72 (2007), proceedings of the First International Workshop on Formal Methods
for Interactive Systems

22. Bowen, J., Reeves, S.: Refinement for user interface designs. Electronic Notes in Theoretical Computer
Science 208, 5 – 22 (2008), proceedings of the 2nd International Workshop on Formal Methods for
Interactive Systems

23. Bowen, J., Reeves, S.: Ui-design driven model-based testing. Electronic Communications of the EASST
22 (01 2009)

24. Béger, P., Becquet, V., Leriche, S., Prun, D.: Contribution à la formalisation des propriétés graphiques
des systèmes interactifs pour la validation automatique. In: Afadl 2019, 18èmes journées Approches
Formelles dans l’Assistance au Developpement de Logiciels . Toulouse, France (Jun 2019)

25. Bérard, B., et al.: Systems and Software Verification: Model-Checking Techniques and Tools. Springer
Publishing Company, Incorporated, 1st edn. (2010)

26. Calder, M., Gray, P., Unsworth, C.: Tightly coupled verification of pervasive systems. Electronic Com-
munications of the EASST 22 (01 2009)

27. Campos, J., Harrison, M.: Modelling and analysing the interactive behaviour of an infusion pump 45

(01 2011)
28. Cansell, D., Gibson, J.P., Méry, D.: Refinement: A constructive approach to formal software design for

a secure e-voting interface. Electronic Notes in Theoretical Computer Science 183, 39 – 55 (2007),
proceedings of the First International Workshop on Formal Methods for Interactive Systems

29. Cartwright-Finch, U., Lavie, N.: The role of perceptual load in inattentional blindness. Cognition 102(3),
321 – 340 (2007)

https://doi.org/10.1007/978-3-540-30080-9_7

30. Cerone, A.: Closure and attention activation in human automatic behaviour: A framework for the formal
analysis of interactive systems 45 (01 2011)

31. Cerone, A.: Towards a cognitive architecture for the formal analysis of human behaviour and learning.
In: Mazzara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and Foundations. pp.
216–232. Springer International Publishing, Cham (2018)

32. Cerone, A., Elbegbayan, N.: Model-checking driven design of interactive systems. Electronic Notes in
Theoretical Computer Science 183, 3 – 20 (2007), proceedings of the First International Workshop on
Formal Methods for Interactive Systems

33. Cerone, A., Zhao, Y.: Stochastic modelling and analysis of driver behaviour. ECEASST 69 (2013)
34. Cleaveland, R., Li, T., Sims, S.: The concurrency workbench of the new century. User’s manual, SUNY

at Stony Brook, Stony Brooke, NY, USA (2000)
35. David, R., Alla, H.: Discrete, Continuous, and Hybrid Petri Nets. Springer Publishing Company, Incor-

porated, 2nd edn. (2010)
36. Dittmar, A., Hübner, T., Forbrig, P.: Hops: A prototypical specification tool for interactive systems. In:

Graham, T.C.N., Palanque, P. (eds.) Interactive Systems. Design, Specification, and Verification. pp.
58–71. Springer Berlin Heidelberg, Berlin, Heidelberg (2008)

37. Dittmar, A., Schachtschneider, R.: Lightweight interaction modeling in evolutionary prototyping. ECE-
ASST 69 (2013)

38. Dix, A., Ghazali, M., Ramduny-Ellis, D.: Modelling devices for natural interaction. Electronic Notes in
Theoretical Computer Science 208, 23 – 40 (2008), proceedings of the 2nd International Workshop on
Formal Methods for Interactive Systems

39. E. Raymond, J., Shapiro, K., Arnell, K.: Temporary suppression of visual processing in an rsvp task: An
attentional blink? Journal of experimental psychology. Human perception and performance 18, 849–60
(09 1992)

40. Geniet, R., Singh, N.K.: Refinement based formal development of human-machine interface. In: Maz-
zara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and Foundations. pp. 240–256.
Springer International Publishing, Cham (2018)

41. Goldson, D., Reeve, G., Reeves, S.: µ-chart-based specification and refinement. In: Proceedings of the
4th International Conference on Formal Engineering Methods: Formal Methods and Software Engineer-
ing. pp. 323–334. ICFEM ’02, Springer-Verlag, Berlin, Heidelberg (2002)

42. Goranko, V., Galton, A.: Temporal logic. The Stanford Encyclopedia of Philosophy (Winter 2015 Edi-
tion), Edward N. Zalta (ed.) (2015)

43. Gosain, A., Sharma, G.: Static analysis: A survey of techniques and tools. In: Intelligent Computing and
Applications. pp. 581–591. Springer India, New Delhi (2015)

44. Harrison, M.D., Kray, C., Campos, J.C.: Exploring an option space to engineer a ubiquitous computing
system. Electronic Notes in Theoretical Computer Science 208, 41 – 55 (2008), proceedings of the 2nd
International Workshop on Formal Methods for Interactive Systems

45. Harrison, M.D., Masci, P., Campos, J.C., Curzon, P.: Automated theorem proving for the systematic
analysis of an infusion pump. ECEASST 69 (2013)

46. Harrison, M.D., Masci, P., Campos, J.C.: Formal modelling as a component of user centred design.
In: Mazzara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and Foundations. pp.
274–289. Springer International Publishing, Cham (2018)

47. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, New
York, NY, USA (1996)

48. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Inc., Upper Saddle River, NJ, USA
(1985)

49. Holzmann, G.: The SPIN Model Checker: Primer and Reference Manual. Addison-Wesley Professional,
1st edn. (2011)

50. Huang, H., Rukšėnas, R., Ament, M., Curzon, P., Cox, A., Blandford, A., Brumby, D.: Capturing the
distinction between task and device errors in a formal model of user behaviour 45 (01 2011)

51. ISO-8807:1989: Information processing systems - open systems interconnection - lotos - a formal de-
scription technique based on the temporal ordering of observational behaviour (1989)

52. Johnson, C.W.: Using assurance cases and boolean logic driven markov processes to formalise cyber
security concerns for safety-critical interaction with global navigation satellite systems 45 (01 2011)

53. Kray, C., Kortuem, G., Krüger, A.: Adaptive navigation support with public displays. In: Proceedings
of the 10th International Conference on Intelligent User Interfaces. pp. 326–328. IUI ’05, ACM, New
York, NY, USA (2005)

54. Leriche, S., Conversy, S., Picard, C., Prun, D., Magnaudet, M.: Towards handling latency in interactive
software. In: Mazzara, M., Ober, I., Salaün, G. (eds.) Software Technologies: Applications and Founda-
tions. pp. 233–239. Springer International Publishing, Cham (2018)

55. Masci, P., Curzon, P., Blandford, A., Furniss, D.: Modelling distributed cognition systems in pvs 45 (01
2011)

56. Masci, P., Rukšėnas, R., Oladimeji, P., Cauchi, A., Gimblett, A., Li, Y., Curzon, P., Thimbleby, H.: On
formalising interactive number entry on infusion pumps 45 (01 2011)

57. Mori, G., Paterno, F., Santoro, C.: Design and development of multidevice user interfaces through mul-
tiple logical descriptions. IEEE Transactions on Software Engineering 30(8), 507–520 (Aug 2004).
https://doi.org/10.1109/TSE.2004.40

58. de Moura, L., Owre, S., Rueß, H., Rushby, J., Shankar, N., Sorea, M., Tiwari, A.: Sal 2. In: Alur,
R., Peled, D.A. (eds.) Computer Aided Verification. pp. 496–500. Springer Berlin Heidelberg, Berlin,
Heidelberg (2004)

59. Myers, B.A., Rosson, M.B.: Survey on user interface programming. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems. pp. 195–202. CHI ’92, ACM, New York, NY,
USA (1992)

60. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.: Icos: A model-based user interface description
technique dedicated to interactive systems addressing usability, reliability and scalability. ACM Trans.
Comput.-Hum. Interact. 16(4), 18:1–18:56 (Nov 2009)

61. Norman, G., Palamidessi, C., Parker, D., Wu, P.: Model checking the probabilistic ⇡-calculus. In: Proc.
4th International Conference on Quantitative Evaluation of Systems (QEST’07). pp. 169–178. IEEE
Computer Society (2007)

62. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: Pvsio-web: a tool for rapid prototyping device user
interfaces in pvs. ECEASST 69 (2013)

63. Owicki, S., Lamport, L.: Proving liveness properties of concurrent programs. ACM Trans. Program.
Lang. Syst. 4(3), 455–495 (Jul 1982)

64. Puschner, P., Burns, A.: A review of worst-case execution-time analyses. Real-time Systems - RTS (01
1999)

65. Rukšėnas, R., Back, J., Curzon, P., Blandford, A.: Formal modelling of salience and cognitive load.
Electronic Notes in Theoretical Computer Science 208, 57 – 75 (2008), proceedings of the 2nd Interna-
tional Workshop on Formal Methods for Interactive Systems

66. Rukšėnas, R., Curzon, P., Blandford, A.: Detecting cognitive causes of confidentiality leaks. Electronic
Notes in Theoretical Computer Science 183, 21 – 38 (2007), proceedings of the First International
Workshop on Formal Methods for Interactive Systems

67. Rukšėnas, R., Curzon, P.: Abstract models and cognitive mismatch in formal verification 45 (01 2011)

https://doi.org/10.1109/TSE.2004.40

68. Rukšėnas, R., Masci, P., Harrison, M.D., Curzon, P.: Developing and verifying user interface require-
ments for infusion pumps: A refinement approach. ECEASST 69 (2013)

69. Ryan, M.D., Smyth, B.: Applied pi calculus. In: Cortier, V., Kremer, S. (eds.) Formal Models and Tech-
niques for Analyzing Security Protocols, chap. 6. IOS Press (2011)

70. Sabelfeld, A., Myers, A.C.: Language-based information-flow security. IEEE J.Sel. A. Commun. 21(1),
5–19 (Sep 2006)

71. SC-205, R.F., 71, E.A.W.G.: Rtca/do-178c software considerations in airborne systems and equipment
certification (December 2011)

72. SC-205, R.F., 71, E.A.W.G.: Rtca/do-333 formal methods supplement to do-178c and do-278a (Decem-
ber 2011)

73. Shankar, N.: Pvs: Combining specification, proof checking, and model checking. In: Srivas, M., Camil-
leri, A. (eds.) Formal Methods in Computer-Aided Design. pp. 257–264. Springer Berlin Heidelberg,
Berlin, Heidelberg (1996)

74. Silva, J.L., Campos, J.C., Paiva, A.C.: Model-based user interface testing with spec explorer and con-
curtasktrees. Electronic Notes in Theoretical Computer Science 208, 77 – 93 (2008), proceedings of the
2nd International Workshop on Formal Methods for Interactive Systems

75. Silva, J.L., Fayollas, C., Hamon, A., Palanque, P., Martiinie, C., Barboni, E.: Analysis of wimp and post
wimp interactive systems based on formal specification. ECEASST 69 (2013)

76. Sinnig, D., Chalin, P., Khendek, F.: Towards a common semantic foundation for use cases and task
models. Electronic Notes in Theoretical Computer Science 183, 73 – 88 (2007), proceedings of the First
International Workshop on Formal Methods for Interactive Systems

77. Soukoreff, R.W., Mackenzie, I.S.: Theoretical upper and lower bounds on typing speed using a stylus
and a soft keyboard. Behaviour & Information Technology 14(6), 370–379 (1995)

78. Spivey, J.M.: The Z Notation: A Reference Manual. Prentice-Hall, Inc., Upper Saddle River, NJ, USA
(1989)

79. Standardization, I.: ISO 9241-11: Ergonomic Requirements for Office Work with Visual Display Ter-
minals (VDTs): Part 11: Guidance on Usability (1998)

80. Su, L., Bowman, H., Barnard, P.: Performance of reactive interfaces in stimulus rich environments,
applying formal methods and cognitive frameworks. Electronic Notes in Theoretical Computer Science
208, 95 – 111 (2008), proceedings of the 2nd International Workshop on Formal Methods for Interactive
Systems

81. Thimbleby, H., Gimblett, A.: Dependable keyed data entry for interactive systems 45 (01 2011)
82. Turner, J., Bowen, J., Reeves, S.: Using Abstraction with Interaction Sequences for Interactive System

Modelling: STAF 2018 Collocated Workshops, Toulouse, France, June 25-29, 2018, Revised Selected
Papers, pp. 257–273 (06 2018)

83. Westergaard, M.: A game-theoretic approach to behavioural visualisation. Electronic Notes in Theoreti-
cal Computer Science 208, 113 – 129 (2008), proceedings of the 2nd International Workshop on Formal
Methods for Interactive Systems

Preliminary Thoughts on User Interfaces for
Logic-based Medical Image Analysis

Vincenzo Ciancia1[0000�0003�1314�0574] and Mieke
Massink1[0000�0001�5089�002X]

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”
Consiglio Nazionale delle Ricerche

{vincenzo.ciancia,mieke.massink}@isti.cnr.it

Abstract. Spatial logic and spatial model checking may provide domain
experts with a convenient and very concise way to specify contouring and
segmentation operations, grounded on the solid mathematical founda-
tions of Topological Spatial Logics. Recent results in the domain of brain
tumour segmentation have shown that this approach has the potential to
reach comparable accuracy and computational e�ciency as other state-
of-the-art techniques in this domain. One of the open challenges, specific
for this approach, is how such a technique could be best embedded into
the common workflow of clinicians and radiologists. In particular, do-
main experts involved in research would profit from a set-up and user
interface that would also support collaboration and exchange of expertise
among medical physicists, engineers and technicians. We briefly describe
some related work, setting, aims, and challenges for such an integrated
interface.

Keywords: Spatial Logics · Model Checking · Human-Computer Inter-
action · Medical Imaging

1 Introduction

Computational methods play a prominent role in many applications for med-
ical image analysis. An important example in the domain of neuro-imaging is
segmentation of the human brain and of brain tumours. This constitutes a very
active research area (see for example [18,10,12,22,25] and references therein)
in which many automatic and semi-automatic methods have been proposed to
overcome the current time consuming practise of manual delineation of brain
tumours in magnetic resonance images (MRI) and at providing an accurate, re-
liable and reproducible method of segmentation of the tumour area and related
tissues [12].

In recent work [5,4,2,6,7] by a research group (including the authors) of ex-
perts in model checking and in medical physics, a novel approach to image seg-
mentation has been developed, aimed at merging the capabilities of state-of-the-
art libraries of computational imaging algorithms with the unique combination of
declarative specification and optimised execution provided by spatial logic model

2 V. Ciancia et al.

checking. A declarative approach makes analysis transparent, reproducible and
human readable. Moreover, the specifications are concise and can easily be ex-
changed by domain experts. This novel methodology exploits the relative spatial
relations between tissues of interest, mentioned earlier, and encompasses di↵er-
ent segmentation methods, such as texture features, local histogram processing,
and prior knowledge, that can be freely combined and nested, since they are
mapped to operators of a domain-specific language for image analysis [3].

The approach, and its related (command line) tool VoxLogicA1, has been
applied to an extensive existing benchmark of medical images for the segmen-
tation of brain tumours [20] and preliminary results show that it can reach
state-of-the-art accuracy, compared to many best performing algorithms in the
field [6] which, nowadays, are mostly dominated by deep learning based ap-
proaches [20,19]. The tools and methods can be used both for two-dimensional
(2D) and three-dimensional (3D) medical images such as those produced by MRI
machines. The use of 3D information may lead to improved accuracy and is of
high interest in the field.

The logical-declarative approach of VoxLogicA permits users to write very
short “queries” that exploit familiar, basic spatial concepts such as region prox-
imity, reachability, separation, distance and similarity, arbitrarily nested and
combined with traditional Boolean operators (union, intersection, complemen-
tation) and derived and domain specific operators for medical imaging (e.g.
contact, region growing, filter, percentiles). Such queries are then turned into
optimised parallel execution pipelines using the internal execution engine of Vox-
LogicA (in essence, a memoizing global spatial model checker), and can be run
over arbitrarily large datasets. In Figure 1 we show an example (the specifica-
tion in [6]) of the current (textual) type of logical specifications and the input,
namely a 3D image of a human brain a↵ected by glioblastoma, and output of
the analysis (note that we are only showing a slice of the input and output, but
the analysis is carried out in 3D). We refer the reader to [6] for further details.

Among the planned future developments is the inclusion of means for in-
teractive refinement of analysis such as the fine-tuning of specific values (e.g.
thresholds or distances) and the embedding of the analysis tools in the common
workflow and related digital space of domain experts.

Even if current results obtained using VoxLogicA appear promising, the tool
lacks a user-oriented graphical interface that can leverage adoption in the medi-
cal imaging community. This brings us to the main question that we investigate
in this paper, namely what could a suitable graphical user interface look like,
that smoothly integrates the proposed analysis method with other functionalities
that are essential for the professional needs of domain experts, such as the dis-
play of high-resolution medical images, reporting facilities, version control, and
visual design of analysis. What characteristics should such an interface have so
that domain experts can perform their inherently multi-tasking work smoothly,
minimising the cognitive costs of reduced comprehension and recall and related
diagnostic error rates?

1
VoxLogicA: https://github.com/vincenzoml/VoxLogicA.

User Interfaces for Medical Image Analysis 3

Fig. 1. The spatial logic specification identifying glioblastoma for radiotherapy pur-
poses, and one example of input (left image) and output (right image), where all points
in the image that satisfy the spatial logic formula gtv are shown in red (gtv stands for
gross tumour volume, i.e. the part of the tumour that can actually be seen in an MRI
image). Slice from 3D image Brats17 2013 2 1, FLAIR, from the Brain Tumour Image
Segmentation Benchmark BraTS 2017 [23,1]

2 Related Work and Literature Review

Although systems for the automatic analysis of medical images have been a
topic of study from the early 70ties and have since then found increasingly
wide application in the clinical setting, there are surprisingly few studies on the
usability aspects of such systems. Some studies have addressed the ergonomic
and physical aspects of the radiologist’s workspace (see some references in [21]).

Also some information on workspace use and preference of radiologists is re-
ported in [21] and is based on a brief survey involving 336 respondents among
radiology professionals. The report provides some insight in the preferred work-
station setups (such as a strong preference for having two diagnostic monitors
and a divergent opinion on the preferred number of additional non-diagnostic
monitors) and in the number and kind of applications that are kept open simul-
taneously during diagnosis activity.

A recent review of existing and potential computer user interfaces for radiol-
ogy can be found in [16]. This article underlines the importance of good usability
and suggests that diagnostic imaging needs user interfaces to deal both with im-
age manipulation and workflow management. Various interfaces for working with
2D and 3D medical images are discussed. The latter are deemed preferable for
the added value these may provide. In [8] a comparative usability study is per-
formed for a series of tools for drawing Regions of Interest (ROI) on medical
images. The comparison is based on a use case analysis.

Graphical user interfaces for medical imaging typically focus on navigation
of a database of images (see e.g. Figure 2), with some notable exceptions. 3D-
Slicer (Figure 3) is aimed at interactive execution of analysis programs written
in python or C++, letting the user calibrate the parameters of the analysis.

4 V. Ciancia et al.

Fig. 2. The OsiriX medical image viewer, with database navigation capabilities (see
https://www.osirix-viewer.com/).

Fig. 3. The 3d Slicer tool, integrating a medical image viewer with execution of user
programs and interactive calibration of parameters (see https://www.slicer.org/).

https://www.osirix-viewer.com/
https://www.slicer.org/

User Interfaces for Medical Image Analysis 5

In [11] a proof-of-concept visual programming interface to the imaging library
ITK2 has been designed using Simulink3. Along the same lines are the e↵orts in
[17]. MITK [24], MeVisLab [15] and SCIRun are software tools that encompass
visual dataflow programming for scientific purposes and image analysis, most of
them also based on ITK. Although the tool VoxLogicA is also based on ITK,
the level of abstraction is quite di↵erent, as VoxLogicA does not directly expose
the methods of the underlying imaging library (whose programming interface
is aimed at specialists of the field), but rather hides them under the lingua
franca of spatial logics, which is aimed at usability by a wider, less-technical
audience (the di↵erence, in spirit, is the same that exist between analysing data
using imperative programming languages such as C++ or Python, versus using
declarative approaches like the ubiquitous structured query language SQL).

Finally, very close to our current interest is the work by Gambino et al. [13]
that proposes a framework for data-driven adaptive graphical user interface gen-
eration. In this framework the user can insert or remove tools directly at runtime
in a simple and immediate way. The software architecture is based on the well-
known Model-View-Controller (MVC) paradigm to guarantee a modular and
scalable set-up that can be extended when needed. The work provides detailed
interaction diagrams of the proposed GUI and it has been implemented as a
plug-in of the DICOM4 viewer OsiriX.

3 Computer-assisted Design of Spatial Logic
Specifications for Medical Imaging

Our e↵ort is aimed at incorporating spatial logic model checking in the classical
interfaces for medical images viewers, such as OsiriX, and amalgamating these
with a visual programming interface for logical specifications, with interactive
calibration of parameters and navigational visualisation of the results on possibly
large datasets of medical imaging cases.

Although a typical spatial logic specification for image analysis is rather con-
cise (in general it consists of a few dozens of lines of text), it may be very helpful
for a domain expert to have quick, detailed and visual feedback on all intermedi-
ate formulas. This could help considerably in letting such experts quickly develop
a feeling for the e↵ect of various basic and derived operators and more abstract
building blocks of the spatial logic and also in an easier exploration of the e↵ect
of numeric parameters of operators such as distance, correlation coe�cients and
thresholds. Also the stability of more abstract building blocks is an issue: Does
the specification give satisfactory results for all images of a given data (image)
set? Furthermore, providing such kind of visual feedback could considerably re-
duce the learning curve for the uptake of the approach also by domain experts
with a more clinical background and less skilled in programming.

2 The Insight Segmentation and Registration Toolkit, see https://www.itk.org/.
3 See https://www.mathworks.com/products/simulink.html
4 DICOM stands for “Digital Imaging and COmmunications in Medicine” and is a
widely used standard for digital medical images and related meta data.

https://www.itk.org/

6 V. Ciancia et al.

We envisage computer-assisted design of logical specification as an instru-
ment to address such issues, and leverage adoption of formal methods in novel
application fields. Computer-assisted logical specification crucially depends on
the design of appropriate user interfaces, aimed at discoverability of useful de-
sign patterns, and of potential mistakes, in order to make logical specification
an engaging task for domain experts in specific application fields. We shall now
discuss some of the major challenges we identified in this scenario.

Let us first establish some key concepts. Making a step towards abstraction,
the syntax of a logic formula is a tree in which each node is a logical operator,
and each child corresponds to an argument, which, inductively, can be a logic
formula. Leaf nodes obviously correspond to constants or atomic propositions. A
logical specification is therefore a forest of syntax trees, one for each formula to
be checked. As each analysis is typically meant to be applied to several models
(in this case medical images), one may also consider the set of all models to
be analysed as a data stream, and consider each node of the syntax tree as a
processing node in a processing pipeline.

The visual design of such kinds of processing pipelines is part of the research
line on dataflow programming [9]. Basically, each processing unit is represented
as a node in a diagram/graph, and arcs represent the flow of data. Such type of
design is common, for instance, in programming environments for sound design
(for instance, Pure Data5). In the case of logic formulas, each processing node
is a logical operator, and arcs go from the bottom of the syntax tree to the top,
linking each argument to its parent operator.

3.1 Challenges

In the particular case of dataflow programs represented by spatial logic specifica-
tions, and especially when such logical specification is aimed at model checking,
some peculiar issues related to Human-Computer Interaction become apparent.
In the following we attempt to discuss some of the most relevant ones we iden-
tified. The design issues we discuss are common to many logical formalisms
and case studies, modulo the fact that the visualisation of intermediate and fi-
nal results may not be as immediate as in the case of images. For instance, in
a traditional temporal model checker, visualisation can consist of the Boolean
satisfaction value of a formula on the given system model, but also, for debug-
ging purposes, the value of sub-formulas on relevant states, or a counterexample
when a given formula does not hold. Nevertheless, from now on, we focus on the
main case study of the paper, namely spatial logics for medical imaging, drawing
expertise from our recent research [6,7].

Several dimensions of the design space. The design space of the analysis is shaped
by several orthogonal dimensions. First and foremost, one may think of the
numerical parameters of formulas (e.g., thresholds, or distances). But when it
comes to interactive development of a set of logic formulas, there is much more,

5 See https://puredata.info/.

https://puredata.info/

User Interfaces for Medical Image Analysis 7

laying “outside” of the specification itself. An important dimension to consider
is that of the dataset (i.e. the set of medical images and related meta-data).
Each analysis is meant to be tested against some specific datasets, and then to
be reused on possibly larger ones. For each dataset, there is some information
which is gathered “globally”, that is, extracted from the analysis after it has
been run on the whole dataset, such as accuracy scores, and other information
coming from the local results of the analysis (both the final result, and that of
relevant intermediate steps) for each specific element of the dataset. Specification
designers need to visualise such results on more than one dataset at the same
time, in order to receive immediate feedback on possible improvements or design
mistakes. Another dimension is that of multiple versions of the same analysis,
either due to incremental design by the same designer, or by the presence of
multiple collaborators. In this case, not only it is very important to be able to
see the result of multiple versions at the same time, but also to be able to overlay
the local results of several versions and to clearly visualise the di↵erences directly
from within the user interface.

Textual representation vs. visualisation. Logic formulas are traditionally written
in textual form, and it is not the purpose of our current research to replace tex-
tual information entirely with visual design. Instead, we envisage a user interface
where it is possible to seamlessly edit both the visual and the textual represen-
tation of the specification. However, the two views may not be easily matched.
For instance, maintaining coherency is di�cult when the user cuts and pastes
textual formulas from another source; visual information (especially layout) may
be di�cult to transmit as it is heavily context-dependent. Also, changes to text
(e.g. renaming of variables) may render the visual representation inconsistent.

Layout vs. structure. Another tension in the design of user interfaces for logical
specifications is that between layout of elements, and syntactic structuring of
sub-formulas. As we mentioned briefly, a formula is defined by its syntax tree,
which is indeed a graph. However, the visual rendering of such a tree is am-
biguous. For instance, should a block of formulas in a let binding such as let x
= formula1 AND formula2 be treated as a subgraph of the dataflow program,
with formula1 and formula2 visible, or as a black-box entity named x that can
eventually be explored to change the internals of the block? Indeed, the possibil-
ity of refactoring the textual presentation (e.g. substituting x with its definition)
makes this aspect particularly complex.

Equivalent subgraphs. Strictly linked to the previous point is the fact that model
checkers typically adopt methods, such as memoization, to identify equivalent
sub-formulas and avoid to recompute them. Although this is a pure implementa-
tion aspect in principle, it may be important to make such techniques observable
in the user interface, both as tools to simplify the design, and as a visual aid to
help the user to manage the complexity of a specific design by identifying the
components that perform the same tasks.

8 V. Ciancia et al.

Non-linear e↵ects. Classical examples of dataflow programming such as audio
design typically enjoy a top-to-bottom dataflow and an incremental design pro-
cess, in which the quality of the result is not generally a↵ected by small mistakes
in intermediate steps, as the processed data is constituted by continuous signals.
On the other hand, logical specifications inherently deal with discrete data, and
small mistakes may have non-linear e↵ects, that propagate to the final result
in unexpected, often subtle ways. Therefore, it is very important to design user
interfaces that support easy, arbitrary visual rearranging of processing nodes in
order to quickly visualise the e↵ect of even minor changes, on “distant” inter-
mediate steps. In current dataflow-based user interfaces, manual rearranging of
nodes is tedious and not intended as a primary functionality.

User-centred Design. Various groups of users could be expected to use interfaces
for the analysis of medical images. One group of users could be domain experts
with a more technical background, such as radiologists and medical-physicists.
They could be interested in the design of new specifications for particular kinds
of analysis involving di↵erent parts of the body or with specific characteristics.
Another class of users could be medical sta↵ that need to review or make a
diagnosis of a series of analyses and perhaps annotate these and produce reports
in preparation of further patient treatment. These classes of users would use the
interface in quite di↵erent ways, but providing a single integrated system could
be helpful for a smooth collaboration and exchange of expertise and feedback
between di↵erent kind of users. The needs of the various user groups should be
carefully studied, in particular there may be concerns on cognitive aspects such
as information overload, multi-tasking and focus in the critical task of medical
image analysis for radiotherapy. It would be very interesting to investigate how
user-centred design methods that combine contextual design and scenario based
techniques with formal models, such as that proposed in [14], could be used in
this setting.

4 Discussion

Systems for the automatic analysis of medical images have been an active topic
since the early 70ties and have a wide uptake in the clinical setting. Never-
theless, there appears to be very little research on the design of suitable user
interfaces for such system, despite the critical and cognitively demanding nature
of the work. Professionals that analyse medical images on a regular basis need
to manage much information of very di↵erent nature such as case information,
medical records, dictation systems, reporting facilities, literature search, access
to databases and version control, to mention a few [21]. This requires an ade-
quate support for forms of multi-tasking with minimal impact on the focus and
already demanding cognitive load of domain experts. The integration of novel
and more interactive approaches to medical imaging, such as those based on
spatial logic and model checking or the execution of user programs and interac-
tive calibration of parameters, pose further challenges on the interface design.

User Interfaces for Medical Image Analysis 9

We have discussed some selected literature, preliminary ideas and further chal-
lenges as a first step towards a more detailed interface design for this domain of
application.

References

1. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., Frey-
mann, J.B., Farahani, K., Davatzikos, C.: Advancing the cancer genome at-
las glioma MRI collections with expert segmentation labels and radiomic fea-
tures. Scientific Data 4 (2017). https://doi.org/10.1038/sdata.2017.117, https:

//doi.org/10.1038/sdata.2017.117, online publication date: 2017/09/05
2. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Spatial

Logics and Model Checking for Medical Imaging. International Journal on Soft-
ware Tools for Technology Transfer (Feb 2019). https://doi.org/10.1007/s10009-
019-00511-9, https://doi.org/10.1007/s10009-019-00511-9, online First

3. Banci Buonamici, F., Belmonte, G., Ciancia, V., Latella, D., Massink,
M.: Spatial logics and model checking for medical imaging. International
Journal on Software Tools for Technology Transfer Online First (2019).
https://doi.org/https://doi.org/10.1007/s10009-019-00511-9

4. Belmonte, G., Ciancia, V., Latella, D., Massink, M., Biondi, M., De Otto, G.,
Nardone, V., Rubino, G., Vanzi, E., Banci Buonamici, F.: A topological method for
automatic segmentation of glioblastoma in mr flair for radiotherapy - ESMRMB
2017, 34th annual scientific meeting. Magnetic Resonance Materials in Physics,
Biology and Medicine 30(S1), 437 (oct 2017). https://doi.org/10.1007/s10334-
017-0634-z, https://doi.org/10.1007/s10334-017-0634-z

5. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: From collective adaptive sys-
tems to human centric computation and back: Spatial model checking for medi-
cal imaging. In: ter Beek, M.H., Loreti, M. (eds.) Proceedings of the Workshop
on FORmal methods for the quantitative Evaluation of Collective Adaptive Sys-
Tems, FORECAST@STAF 2016, Vienna, Austria, 8 July 2016. EPTCS, vol. 217,
pp. 81–92 (2016). https://doi.org/10.4204/EPTCS.217.10, https://doi.org/10.
4204/EPTCS.217.10

6. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Voxlogica: A spatial model
checker for declarative image analysis. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International
Conference, TACAS 2019, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-
11, 2019, Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp.
281–298. Springer (2019). https://doi.org/10.1007/978-3-030-17462-0 16, https:
//doi.org/10.1007/978-3-030-17462-0_16

7. Belmonte, G., Ciancia, V., Latella, D., Massink, M.: Innovating medical image
analysis via spatial logics. In: ter Beek, M.H., Fantechi, A., Semini, L. (eds.) From
Software Engineering to Formal Methods and Tools, and Back. Lecture Notes in
Computer Science (Accepted for publication, 2019)

8. Chen, C., Abdelnour-Nocera, J.L., Wells, S., Pan, N.: Usability practice in medical
imaging application development. In: Holzinger, A., Miesenberger, K. (eds.) HCI
and Usability for e-Inclusion, 5th Symposium of the Workgroup Human-Computer
Interaction and Usability Engineering of the Austrian Computer Society, USAB
2009, Linz, Austria, November 9-10, 2009 Proceedings. Lecture Notes in Computer

https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1038/sdata.2017.117
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/https://doi.org/10.1007/s10009-019-00511-9
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.1007/s10334-017-0634-z
https://doi.org/10.4204/EPTCS.217.10
https://doi.org/10.4204/EPTCS.217.10
https://doi.org/10.4204/EPTCS.217.10
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16
https://doi.org/10.1007/978-3-030-17462-0_16

10 V. Ciancia et al.

Science, vol. 5889, pp. 405–415. Springer (2009). https://doi.org/10.1007/978-3-
642-10308-7 29, https://doi.org/10.1007/978-3-642-10308-7_29

9. Dennis, J.B.: First version of a data flow procedure language. In: Programming
Symposium, Proceedings Colloque Sur La Programmation. pp. 362–376. Springer-
Verlag, Berlin, Heidelberg (1974), http://dl.acm.org/citation.cfm?id=647323.
721501

10. Despotović, I., Goossens, B., Philips, W.: MRI segmentation of the human brain:
Challenges, methods, and applications. Computational and Mathematical Methods
in Medicine 2015, 1–23 (2015). https://doi.org/10.1155/2015/450341, http://dx.
doi.org/10.1155/2015/450341

11. Dickinson, A.W.L., Abolmaesumi, P., Gobbi, D.G., Mousavi, P.: SimITK: Visual
programming of the ITK image-processing library within simulink. Journal of Dig-
ital Imaging 27(2), 220–230 (Jan 2014). https://doi.org/10.1007/s10278-013-9667-
7, https://doi.org/10.1007/s10278-013-9667-7

12. Dupont, C., Betrouni, N., Reyns, Vermandel, M.: On image segmentation meth-
ods applied to glioblastoma: State of art and new trends. IRBM 37(3), 131–
143 (jun 2016). https://doi.org/10.1016/j.irbm.2015.12.004, https://doi.org/10.
1016%2Fj.irbm.2015.12.004

13. Gambino, O., Rundo, L., Cannella, V., Vitabile, S., Pirrone, R.: A framework for
data-driven adaptive GUI generation based on DICOM. Journal of Biomedical
Informatics 88, 37–52 (2018). https://doi.org/10.1016/j.jbi.2018.10.009, https://
doi.org/10.1016/j.jbi.2018.10.009

14. Harrison, M.D., Masci, P., Campos, J.C.: Formal modelling as a component of user
centred design. In: Mazzara, M., Ober, I., Salaün, G. (eds.) Software Technolo-
gies: Applications and Foundations - STAF 2018 Collocated Workshops, Toulouse,
France, June 25-29, 2018, Revised Selected Papers. Lecture Notes in Computer
Science, vol. 11176, pp. 274–289. Springer (2018). https://doi.org/10.1007/978-3-
030-04771-9 21, https://doi.org/10.1007/978-3-030-04771-9_21

15. Heckel, F., Schwier, M., Peitgen, H.O.: Object-oriented application development
with mevislab and python. In: Fischer, S., Maehle, E., Reischuk, R. (eds.) GI
Jahrestagung. LNI, vol. 154, pp. 1338–1351. GI (2009), http://dblp.uni-trier.
de/db/conf/gi/gi2009.html#HeckelSP09

16. Ianessi, A., Marcy, P.Y., Clatz, O., Bertrand, A.S., Sugimoto, M.: A review of
existing and potential computer user interfaces for modern radiology. Insights into
imaging 9(4), 599–609 (2018). https://doi.org/10.1007/s13244-018-0620-7

17. Le, H.D.K., Li, R., Ourselin, S., Potter, J.: A visual dataflow language for image
segmentation and registration. In: Filipe, J., Shishkov, B., Helfert, M., Maciaszek,
L.A. (eds.) Software and Data Technologies. pp. 60–72. Springer Berlin Heidelberg,
Berlin, Heidelberg (2009)

18. Lemieux, L., Hagemann, G., Krakow, K., Woermann, F.: Fast, accurate, and re-
producible automatic segmentation of the brain in t1-weighted volume mri data.
Magnetic Resonance in Medicine 42(1), 127–135 (1999)

19. Litjens, G.J.S., Kooi, T., Bejnordi, B.E., Setio, A.A.A., Ciompi, F., Ghafoo-
rian, M., van der Laak, J.A.W.M., van Ginneken, B., Sánchez, C.I.: A survey
on deep learning in medical image analysis. Medical Image Analysis 42, 60–88
(2017). https://doi.org/10.1016/j.media.2017.07.005, https://doi.org/10.1016/
j.media.2017.07.005

20. Menze, B., et al.: The multimodal brain tumor image segmentation bench-
mark (brats). IEEE Transactions on Medical Imaging 34(10), 1993–2024 (2015).
https://doi.org/10.1109/TMI.2014.2377694

https://doi.org/10.1007/978-3-642-10308-7_29
https://doi.org/10.1007/978-3-642-10308-7_29
https://doi.org/10.1007/978-3-642-10308-7_29
http://dl.acm.org/citation.cfm?id=647323.721501
http://dl.acm.org/citation.cfm?id=647323.721501
https://doi.org/10.1155/2015/450341
http://dx.doi.org/10.1155/2015/450341
http://dx.doi.org/10.1155/2015/450341
https://doi.org/10.1007/s10278-013-9667-7
https://doi.org/10.1007/s10278-013-9667-7
https://doi.org/10.1007/s10278-013-9667-7
https://doi.org/10.1016/j.irbm.2015.12.004
https://doi.org/10.1016%2Fj.irbm.2015.12.004
https://doi.org/10.1016%2Fj.irbm.2015.12.004
https://doi.org/10.1016/j.jbi.2018.10.009
https://doi.org/10.1016/j.jbi.2018.10.009
https://doi.org/10.1016/j.jbi.2018.10.009
https://doi.org/10.1007/978-3-030-04771-9_21
https://doi.org/10.1007/978-3-030-04771-9_21
https://doi.org/10.1007/978-3-030-04771-9_21
http://dblp.uni-trier.de/db/conf/gi/gi2009.html#HeckelSP09
http://dblp.uni-trier.de/db/conf/gi/gi2009.html#HeckelSP09
https://doi.org/10.1007/s13244-018-0620-7
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.1109/TMI.2014.2377694

User Interfaces for Medical Image Analysis 11

21. Sharma, A., Wang, K., Siegel, E.: Radiologist digital workspace use and
preference: a survey-based study. J. Digit. Imaging 30(6), 687–694 (2017).
https://doi.org/10.1007/s10278-017-9971-8

22. Simi, V., Joseph, J.: Segmentation of glioblastoma multiforme from MR images –
a comprehensive review. The Egyptian Journal of Radiology and Nuclear Medicine
46(4), 1105–1110 (dec 2015). https://doi.org/10.1016/j.ejrnm.2015.08.001, https:
//doi.org/10.1016%2Fj.ejrnm.2015.08.001

23. Spyridon (Spyros) Bakas et al. (Ed.): 2017 international MICCAI BraTS
Challenge: pre-conference proceedings (Sept 2017), https://www.cbica.upenn.

edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_

shortPapers.pdf

24. Wolf, I., Vetter, M., Wegner, I., Nolden, M., Bottger, T., Hastenteufel, M.,
Schobinger, M., Kunert, T., Meinzer, H.P.: The medical imaging interaction
toolkit (MITK): a toolkit facilitating the creation of interactive software by
extending VTK and ITK. In: Robert L. Galloway, J. (ed.) Medical Imaging
2004: Visualization, Image-Guided Procedures, and Display. SPIE (May 2004).
https://doi.org/10.1117/12.535112, https://doi.org/10.1117/12.535112

25. Zhu, Y., Young, G., Xue, Z., Huang, R., You, H., Setayesh, K., Hatabu,
H., Cao, F., Wong, S.: Semi-automatic segmentation software for quantita-
tive clinical brain glioblastoma evaluation. Academic Radiology 19(8), 977–
985 (aug 2012). https://doi.org/10.1016/j.acra.2012.03.026, https://doi.org/10.
1016%2Fj.acra.2012.03.026

https://doi.org/10.1007/s10278-017-9971-8
https://doi.org/10.1016/j.ejrnm.2015.08.001
https://doi.org/10.1016%2Fj.ejrnm.2015.08.001
https://doi.org/10.1016%2Fj.ejrnm.2015.08.001
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://www.cbica.upenn.edu/sbia/Spyridon.Bakas/MICCAI_BraTS/MICCAI_BraTS_2017_proceedings_shortPapers.pdf
https://doi.org/10.1117/12.535112
https://doi.org/10.1117/12.535112
https://doi.org/10.1016/j.acra.2012.03.026
https://doi.org/10.1016%2Fj.acra.2012.03.026
https://doi.org/10.1016%2Fj.acra.2012.03.026

Synthesizing Glue Code for Graphical User

Interfaces from Formal Specifications
?

Contributed Talk based On Published Results

Keerthi Adabala and Rüdiger Ehlers

Clausthal University of Technology, Clausthal-Zellerfeld, Germany

Abstract. The glue code of a graphical user interface (GUI) is responsi-
ble for reacting to user input by changing the state of the user interface
and triggering the computation to be performed. Here, we present an
approach to synthesize such glue code. Our approach combines several
ideas that work best in combination. We start from specifications in lin-
ear temporal logic (LTL) that express the desired interaction between
the UI and the backend of the program. Our synthesis approach ap-
plies ideas from automata theory to the special case of user interfaces.
We demonstrate that the approach is already scalable enough for first
practical use cases.

1 Introduction

Many applications these days come with a graphical user interface (GUI). Pro-

grams with GUIs are hard to develop due to the inversion of the program’s

control flow that is common in such programs [9]. UI designers often envision

user interactions followed by programmers writing event handlers that describe

the way in which a program should respond to certain events. It is hard to pre-

dict when event handlers are executed as this depends on the completion time of

previously started computation threads and user behaviour. Also it is common

for a developer to forget some sequences of events. While there exist many UI

design tools, the glue code implementation for UI functionality is normally still

done manually. Thus, GUI code development is error-prone and requires many

iterations.

Model-based development of user interactions can mitigate this problem, but

is not commonly done in industry yet. For general modelling tasks of interac-

tive systems, formal methods are often considered too complex to learn and

too inflexible to perform tasks such as rapid prototyping [7]. Part of the reason

for this judgement is the necessity to write additional models, which makes it

di�cult to justify the additional development time. This observation motivated

us to research the automatic GUI glue code synthesis from specifications that

? This work was supported by the German Science Foundation (DFG) under Grant
No. 322591867.

encode requirements rather than manually designed (and modelled) interaction

schemes. As detailed by [19], the use of formal methods forces software engineers

to program more simply and clearly, thus preventing many software faults. Fur-

thermore, our approach has the potential to actually speed up the development

of GUI glue code.

Synthesis of GUI glue code from formal specifications is a special case of re-

active synthesis [3], where a system that continuously interacts with its environ-

ment is computed that satisfies its specification for all possible input sequences.

Linear temporal logic (LTL, [18]) is a commonly used specification language in

this context as it allows to reason over chains of events that usually occur dur-

ing execution of a system. Traditional reactive synthesis frameworks have a few

limitations that prevent them from being applied to GUI glue code synthesis:

1. In synthesis from LTL, the system is assumed to read input bit values and set

output bit values in every time step. This is not the case with user interfaces,

where the controller responds to every input event by executing a sequence

of actions which cannot happen in parallel. There can also be a last input

event after which the system and the controller stall.

2. Specifications for user interfaces are normally huge, requiring a very high

scalability of the synthesis approach, which traditional approaches for syn-

thesis from LTL specifications do not provide.

3. Synthesis approaches that trade the full expressivity of LTL against improved

e�ciency, such as Generalized Reactivity(1) Synthesis [4], cannot deal with

specifications parts that describe chains of events, which are common in user

interface specifications.

4. The application-specific quality metrics for UI glue code, such as starting

computation as quickly as possible and enabling UI elements such as but-

tons whenever possible cannot be accurately captured by traditional quality

metrics in reactive synthesis, such as maximising pay-o↵s in games [2].

Despite these limitations, reactive synthesis can still be applied to GUI glue

code synthesis if we can carefully craft the approach in terms of specification

language, its semantics, and the game solving approach used. We developed one

such approach, which we draft in the next sections.

2 State of the Art

Writing correct user interface code is di�cult [13]. The greatest challenge is that

the UI should be well suitable and usable by wide range of user groups. When

user interfaces are redesigned multiple times in between phases of usability test-

ing, current techniques help little to avoid concurrency bugs when altering code.

This challenge has been partially addressed in the work on multi-modal sys-

tems and various forms of model-based interfaces ([6]; [14]). Although testing

can be applied in the latter case, it is particularly challenging in the GUI case

[10], as it never guarantees the absence of bugs in the code. Formal verification

can be applied as well. For instance, a modern approach by Masci et al. [12]

2

o↵ers correctness checking and rapid prototyping of user interfaces in the early

development stages. For their approach, the model still needs to be manually

written, and it has to be maintained to be useful for post-deployment changes to

the software, which takes a lot of e↵ort. Similarly, a generic approach to verify

interactive systems has been proposed in [16], where each system component is

described as a module that interacts through channels. This approach allows the

plasticity of UI’s to be analyzed. Plasticity is the capacity of a UI to withstand

variations in its context of use (environment, user, platform) while preserving us-

ability [20]. The approach used LNT [5], a formal specification language derived

from the Enhanced Language of Temporal Ordering Specifications (ELOTOS)

standard [1]. LOTOS and LNT are equivalent with respect to expressiveness,

but have a di↵erent syntax. In [17], the authors point out how di�cult it is

to model a system using LOTOS, when quite simple UI behaviours can easily

generate complex LOTOS expressions. The use of LNT alleviates this di�culty.

The approach can cover aspects of the users, the user interfaces, and the func-

tional core of the system but not the state of the system. This is the downside

of formal verification, where major e↵ort is spent on building a model and only

afterwards, bugs in the implementation (or its model) can be found. The con-

cept of synthesis addresses this problem by generating correct-by-construction

designs directly from their specifications.

GUI glue code can be formalized as a finite-state machine that can contin-

uously react to user inputs. Synthesizing such code hence fits the concept of

reactive synthesis [3], in which such finite-state machines are computed from

specifications. Linear temporal logic (LTL) is commonly used as specification

language in this context. Despite of the fact that synthesis from LTL has a

provably high computational complexity, practical reactive synthesis has seen

a substantial improvement in the last few years, with tools such as Strix [15]

winning the 2018 Reactive Synthesis Competition for LTL specifications.

3 Our Approach to GUI Glue Code Synthesis

We recently published a novel approach to the synthesis of GUI glue code that

combines e�cient reasoning with being adapted to GUI glue code [8].

We started with the observation that all events in GUIs, such as UI element

clicks and computation threads starting and terminating, are ordered and no

two events can happen at the same time. After the GUI glue code hands back

control to the UI framework, the system is also blocked from executing further

actions before an external event occurs. This is quite di↵erent from classical

reactive synthesis, where in every step, the input and output atomic propositions

have values. We defined a new controller execution semantics for synthesis that

captures the particularities of this application domain.

Then, we identified a class of automata to which the usual specification parts

for UI applications can be translated and that permits an e�cient synthesis

approach. These so-called universal very-weak automata have been found to be

interesting from a theoretical point of view, as they capture exactly the temporal

3

properties that can be expressed both in the temporal logics LTL and ACTL

[11].

We developed an approach to reduce the synthesis problem from specifica-

tions given as universal very weak automata to solving a game between two

players. The approach reduces size of the game based on exploiting the spe-

cial execution semantics that GUI glue code has. The resulting games are small

enough to be e�ciently solved.

We implemented the overall approach in a prototype tool that takes a formal

specification for GUI glue code, performs the synthesis approach outlined above,

and finally emits GUI glue code in the programming language Java that can be

compiled into an Android application.

4 Presentation Overview

During the proposed presentation at the FMIS workshop, we will focus on ex-

plaining the main ideas of synthesizing GUI glue code, i.e., where the di↵erences

to classical model-based development of UI controllers are, how specifications

for such GUI glue code look like, and what it means to leave the synthesis of

such code fully to the synthesis tool, without building a model of the interaction

between the system and the user by hand. An example Android application (for

cost splitting between members of a team) will serve as our running example.

The aim of the talk is to stimulate a discussion on whether the idea to

synthesize GUI code rather than modelling the desired behavior by hand is a

promising path to correct-by-construction UI interaction, and how it can be

integrated with more wholistic approaches to assure the correctness of systems

with a UI.

References

1. IEC ISO (2001) enhancements to LOTOS (E-LOTOS). international standard
15437

2. Bloem, R., Chatterjee, K., Henzinger, T.A., Jobstmann, B.: Better quality in syn-
thesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV.
LNCS, vol. 5643, pp. 140–156. Springer (2009)

3. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph games and reactive synthesis. In:
et al., E.M.C. (ed.) Handbook of Model Checking, pp. 921–962. Springer (2018)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. J. Comput. Syst. Sci. 78(3), 911–938 (2012)

5. Champelovier, D., Clerc, X., Garavel, H., Guerte, Y., Lang, F., Serwe, W., Smed-
ing, G.: Reference manual of the LOTOS NT to LOTOS translator (version 5.0).
INRIA/VASY (2010)

6. Coutaz, J.: User interface plasticity: Model driven engineering to the limit! In:
Proceedings of the 2nd ACM SIGCHI symposium on Engineering interactive com-
puting systems. pp. 1–8. ACM (2010)

7. Dix, A.J.: Formal methods for interactive systems, vol. 16. Academic Press London
(1991)

4

8. Ehlers, R., Adabala, K.: Reactive synthesis of graphical user interface glue code.
In: Accepted at the Automated Technology for Verification and Analysis - 17th
International Symposium (ATVA) (2019), preprint available at https://www.
ruediger-ehlers.de/publications.html.

9. Fayad, M.E., Schmidt, D.C.: Object-oriented application frameworks - introduc-
tion. Commununications of the ACM 40(10), 32–38 (1997)

10. Hellmann, T.D., Hosseini-Khayat, A., Maurer, F.: Agile interaction design and
test-driven development of user interfaces – a literature review. In: Dingsøyr, T.,
Dybl̊a, T., Moe, N.B. (eds.) Agile Software Development, pp. 185–201. Springer
Berlin Heidelberg (2010)

11. Maidl, M.: The common fragment of CTL and LTL. In: FOCS. pp. 643–652 (2000)
12. Masci, P., Oladimeji, P., Zhang, Y., Jones, P.L., Curzon, P., Thimbleby, H.W.:

Pvsio-web 2.0: Joining PVS to HCI. In: 27th International Conference on Computer
Aided Verification (CAV). pp. 470–478 (2015)

13. Masci, P., Zhang, Y., Jones, P.L., Curzon, P., Thimbleby, H.W.: Formal verification
of medical device user interfaces using PVS. In: Gnesi, S., Rensink, A. (eds.) FASE.
LNCS, vol. 8411, pp. 200–214. Springer (2014)

14. Meixner, G., Paternò, F., Vanderdonckt, J.: Past, present, and future of model-
based user interface development. i-com Zeitschrift für interaktive und kooperative
Medien 10(3), 2–11 (2011)

15. Meyer, P.J., Sickert, S., Luttenberger, M.: Strix: Explicit reactive synthesis strikes
back! In: Chockler, H., Weissenbacher, G. (eds.) CAV. LNCS, vol. 10981, pp. 578–
586. Springer (2018)

16. Oliveira, R., Dupuy-Chessa, S., Calvary, G.: Plasticity of user interfaces: formal
verification of consistency. In: Proceedings of the 7th ACM SIGCHI symposium
on engineering interactive computing systems. pp. 260–265. ACM (2015)

17. Paterno’, F.: Formal reasoning about dialogue properties with automatic support.
Interacting with computers 9(2), 173–196 (1997)

18. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-
dations of Computer Science, Providence, Rhode Island, USA, 31 October - 1
November 1977. pp. 46–57. IEEE Computer Society (1977)

19. Stavely, A.M.: Toward zero-defect programming. Addison-Wesley Longman Pub-
lishing Co., Inc. (1998)

20. Thevenin, D., Coutaz, J.: Plasticity of user interfaces: Framework and research
agenda. In: Interact. vol. 99, pp. 110–117 (1999)

5

https://www.ruediger-ehlers.de/publications.html
https://www.ruediger-ehlers.de/publications.html

Formal Modelling of Safety-Critical Interactive Devices using
Coloured Petri Nets

Sapna Jaidka1, Steve Reeves2, and Judy Bowen3

1 University of Waikato, Hamilton, New Zealand
sapnajaidka87@gmail.com

2 University of Waikato, Hamilton, New Zealand
stever@waikato.ac.nz

3 University of Waikato, Hamilton, New Zealand
judy.bowen@waikato.ac.nz

Abstract. Formal modelling is now widely applied for creating models of safety-critical
interactive systems. Most approaches built so far either focus on the user interface or on
the functional part of a safety-critical interactive system. This paper aims to apply formal
methods for modelling and specifying the user interface, interaction and functional aspects
of a safety-critical system in a single model using Coloured Petri Nets (CPN). We have used
CPNs because of its expressive graphic representation and the ability to simulate the system
behaviour. The technique is illustrated through a case study of the Niki T34 Infusion Pump.

Keywords: Formal Modelling · Formal Method Integration · Coloured Petri Nets.

1 Introduction

Safety should be a central consideration in the development of safety-critical interactive systems.
There are many systems that are considered as safety-critical interactive systems where the interac-
tion occurs via a user or, perhaps, via an automatic manufacturing system (production cell) where
sensors are interacting among themselves. It is very important to ensure that all these types of
system behave correctly because failure can cause significant damage to property, the environment
or even human life. Researchers have been working for many years to solve problems or issues in
safety-critical systems due to poor user interfaces or functional errors. The use of formal methods
for modelling is often recommended as a way of raising confidence in such systems. The focus of this
paper is on user interfaces as well as the underlying system functionality of safety-critical interactive
systems.

The work here aims to apply formal methods for modelling and specifying the user interface,
interaction and functional aspects of the system in a single model. This technique has its starting
point in several formal specification techniques: Z, Presentation Interaction Models (PIMs) and
Presentation Models (PMs) (as for instance in [5]). From this (existing) basis we create a Coloured
Petri Net (CPN) model of a system which will have the required aspects of Z, PMs and PIMs
expressed within it. To specify safety-critical systems adequately, all three aspects, behavioural,
functional and user interface/interaction must be taken into account, hence our investigation of
the combination of models. In summary, our plan here is to show how an existing, accepted way
of formally modelling systems via PM/PIM/Z can be re-cast in the single formalism of CPN, and
then in future, having shown the CPN models are as expressive as the PM/PIM/Z models, we can
move straight from the system to a CPN model of it.

2 Sapna Jaidka , Steve Reeves, and Judy Bowen

We have chosen CPNs mainly because of the state space analysis-based methods made possible
within the CPN Tool, based on support for the state space graph and the strongly connected com-
ponents graph to be automatically generated. Once we have these then functions can be written
in the SML-subset available in CPN Tools which allow many useful further checking and testing
mechanisms. Comparing this with other possibilities, there is a tool called RENEW for Reference
Nets but it does not generate the state space graph [18]. Also we find in the literature that the Ref-
erence Net models or even Object Petri Nets models get transformed into behaviourally equivalent
CPNs for adapting CPN analysis techniques, as mentioned in [19].

The motive for doing this move is two-fold: the existing method results in three separate models,
and the drawback with this is that a lot of work is required to do the coupling of functional
behaviour with interactive elements to ensure consistency [8][26]. Moreover, these models need
to be combined in order to verify safety properties which might relate to functional constraints,
interface constraints or both. The new technique results in a single model capturing all three aspects
and all the connections between them. So, the benefit of having all aspects in a single model is that
there is no work required to combine them for analysis.

2 Related Work

In the early years, the main focus of formal methods was on modelling and specifying the functional
part of a system. User-interfaces and interaction were not considered important because systems
used to be very simple. But now as the interfaces have become more complex, so their design and
analysis is very obviously important. There were some formal methods which were used to model
and verify both user-interface and interaction, for example, Jacob in [13] has used techniques based
on state transition diagrams and BNF to specify the user-interface and Dix and Runciman in [11]
focused on creating abstract models for user interfaces and interaction. However, formal methods
for system development and those for modelling user interfaces and interaction were considered
separate. There exists far less work on the combination of both these aspects.

The Food and Drug Administration (FDA) has been working with academic collaborators to
develop model-based engineering methods [1]. Figueiredo et al. [2] presented the main advantages
of a formal language that is able to be used in the construction of reference models for the medical
devices domain and conducted a case study on a specification of a medical device. Masci et al.
also presented a case study on a generic PCA infusion pump in [21] and verified the user-interface
using the Prototype Verification System (PVS) and also formally modelled the requirements of the
interface in [23]. Campos and Harrison presented a case study on modelling and analysis of the
Alaris infusion pump using their IVY tool [9].

Petri nets form a powerful modelling language and higher level nets, like Coloured Petri Nets, are
used for modelling critical scenarios like railway systems and other safety-critical systems [3] [14].
There exist formalisms like HAMSTERS [20] that focus on task models, and also ICOs [22] and the
APEX framework [24]. The main difference concerning ICOs is around levels of abstraction, because
they take an object-oriented view whereas we are committed to more abstract prior models. All these
studies either focus on the functional part of the system or on the user-interface and interaction.
We present a technique to combine all aspects in a single model.

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 3

3 Coloured Petri Nets and their extensions

Coloured Petri Nets (CPN) is a language used for the modelling and validation of hardware and
software systems. The existing CPN Tool [16] helps in constructing a model and performing syntax
checking. Also simulations can be performed and we can see at every step how the model is behaving.
Automatic generation of full and partial state spaces helps in analyzing and verifying the net model.

We will commence with the formal definition of Coloured Petri Nets [16]. The following are
assumed to be defined: EXPR denotes the set of expressions provided by the inscription language,
i.e., CPN ML [15]. Given an expression e 2 EXPR, the type of e is represented by Type[e]. The
set of variables in an expression e is denoted by Var [e]. V denotes the set of (all) variables. By
SMS , we denote the set of all multi-sets over the set S [15].

Definition 1. A Coloured Petri Net is a tuple (CS ,P ,T ,A,N ,C ,G ,E , I) such that [15]:

(i) CS is a finite set of non-empty types, called colour sets.

(ii) P is a finite set of places.

(iii) T is a finite set of transitions.

(iv) A is a finite set of directed arcs such that connect places and transitions.

(v) N is a node function. It is defined from A into P ⇥T [T ⇥ P and shows, for each arc, which

places and transitions are connected by that arc.

(vi) C is a colour function. It is defined from P into CS .

(vii) G is a guard function. It is defined from T ! EXPR such that: 8 t 2 T : Type[G(t)] = Bool ^
Type[Var [G(t)]] ✓ CS .

(viii) E is an arc expression function. It is defined from A into expressions such that: 8 a 2 A :
Type[E (a)] = C (p(a))MS ^ Type[Var [E (a)] ✓ CS] where p(a) is a place of N (a).

(ix) I is an initialization function. It is defined from P into closed expressions such that 8 p 2 P :
Type[I (p)] = C (p)MS .

Definition 2. A distribution of tokens on the places is called a marking. A marking M is a

function that maps each place p into a multi-set of values M (p) representing the marking of p. The

initial marking is denoted by M0.

Definition 3. The variables of a transition t is denoted, by overloading function V , as Var [t] ✓
V and is defined so it consists of the free variables appearing in the guard of t and in the arc

expressions of arcs connected to t . A binding of a transition t is a function b that maps each

variable v 2 Var [t] into a value b(v) 2 Type[v]. It is extended to expressions from EXPR in the

obvious way. The application of binding b to expression e is written ehbi. The set of all bindings

for t is denoted by B(t).
A binding element is a pair (t , b) where t 2 T and b 2 B(t).
We often write an arc expression E (a) as E (p, t) or E (t , p) when N (a) = (p, t) or N (a) = (t , p),
respectively, as a suggestive shorthand.

Definition 4. For a binding element (t,b) to be enabled in a marking M there are two conditions

to satisfy: firstly, the corresponding guard expression must evaluate to True. Secondly, for each place

p, an arc expression E (p, t) has to be evaluated using the binding b so that E (p, t)hbi  M (P). This

means that for each place p there should be enough tokens there of the right form so that transition

t can remove the required number of tokens.

4 Sapna Jaidka , Steve Reeves, and Judy Bowen

This means that in an enabled binding element (t,b), the multi-set of tokens removed from an input

place p when t occurs with a binding b is given by E (p, t)hbi, and similarly E (t , p)hbi is the multi-set

of tokens added to an output place p.

Definition 5. A step Y is a non-empty, finite multi-set of binding elements. A step Y is enabled
in a marking M iff the following property is satisfied [15]: 8 p 2 P :

P
(t,b)2Y

E (p, t)hbi  M (p).

When a step Y is enabled in a marking M1 it may occur, changing the marking M1 to another

marking M2, defined by: 8 p 2 P : M2(p) = (M1(p)�
P

(t,b)2Y

E (p, t)hbi) +
P

(t,b)2Y

E (t , p)hbi, which

is to say that when a step happens, tokens are removed from the starting place of a transition and

placed in the ending place of that transition.

3.1 Hierarchical Coloured Petri Nets

Hierarchical Coloured Petri Nets allow models to be divided into modules. This allows the model to
be organized into several pages. There are two ways to interconnect these several pages: substitution

transitions and fusion places [17]. In this paper we are using fusion places. Fusion places are places
which are functionally identical, so they have the same marking.

4 Presentation Model

A Presentation Model (PM) [6] describes the existence, category and behaviour of the widgets
(interactive elements) of a user interface. Widgets are categorized using the widget categorization
hierarchy given in [4]. A presentation model typically consists of several component presentation
models which could be understood as the states of the user interface.

Presentation models consist of two parts: declaration and definition.

hdeclarationi ::= WidgetName{hidenti}+ Category{hidenti}+ Behaviour{hidenti}⇤

The declarations introduce the three sets of identifiers which can be used within the definitions.
WidgetName is a list of names of widgets. Category refers to the description of widget categories.
Behaviour shows what behaviour a widget has associated with it (and it can be empty). Behaviours
are divided into two categories. The first is called a system behaviour (S-behaviour) which refers to
the underlying non-interactive system and the second category is called an interactive behaviour (I-
behaviour) that represents user interface functionality, which changes things about the user interface
itself, like changing screens.

A definition consists of one or more identifiers for presentation models.

hdefinitioni ::= {hpnameiishpexpri}+ where hpnamei ::= hidenti and hpexpri ::= {hwidgetdescri}+

Each state of the system is described in a separate component presentation model by the means of
widget descriptions. A widget description consists of a triple, the widget name, the category and
the set of behaviours associated with the widget. The syntax of a widget description is as follows:

hwidgetdescri ::= (hwidgetnamei, hcategoryi, ({hbehaviouri}⇤))

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 5

Consider a device as shown in Figure 1 having two buttons ON an OFF and one Display.
Pressing the ON button will display a start message and the OFF button will switch off the device.
A PM for the device is given in table 1. The model has three widgets and each widget falls under
one of the two categories (ActCtrl or Responder). ActCtrl is shorthand for action control. The
simple device’s PM has one S-behaviour and two I-behaviours. In table 1, init, ON, OFF are three
component presentation models. Each component presentation model consists of a set of widget
triples. For example, the ON component presentation model comprises of three sets of widget
triples. The first set of triples means that the widget Display is of category Responder and has the
S startmessage behaviour associated with it. Notice that the behaviour Quit is not labelled as an
I-behaviour or S-behaviour as it is a special behaviour that terminates both the system and the
user interface.

Fig. 1: Simple Device

WidgetName Display ONButton OFFButton
Category ActCtrl Responder
Behaviour S startmessage I ON

I OFF Quit
Init is (Display, Responder, ())

(ONButton, ActCtrl, (I ON))
(OFFButton, ActCtrl, (I OFF))

ON is (Display, Responder, (S startmessage))
(ONButton, ActCtrl, ())
(OFFButton, ActCtrl, (I OFF))

OFF is (Display, Responder, ())
(ONButton, ActCtrl, (I ON))
(OFFButton, ActCtrl, (Quit))

Table 1: Presentation Model of a simple device

4.1 Expressing Presentation Models in CPN

We will first look at the declaration part of a PM which introduces the three sets of identifiers:
WidgetName, Category and Behaviour . These three sets of identifiers can be modelled in CPN by:

colset WidgetName = with wid1 | wid2 | ... | widn ;
colset Category = with cid1 | cid2 | ... | cidn ;

colset Behaviour = with bid1 | bid2 | ... | bidn ;
colset Behaviours = list Behaviour ;

where wids are the names of the widgets, cids are the names of the category of the widgets and
bids are the names of the S-behaviours and I-behaviours associated with the widgets.

Now we look at the definition part of the presentation model [6]. A widget description which we
call as widgetdescr is described as a tuple consisting of the widget name, the category and the list
of behaviours associated with the widget. A widget description can be written in CPN as:

colset widgetdescr = product WidgetName * Category * Behaviours;

6 Sapna Jaidka , Steve Reeves, and Judy Bowen

Consider again the example shown in Figure 1 and Table 1. The model of this presentation
model in CPN is shown in Tables 2 and 3. Each state of the system is described in a separate
component presentation model by the means of widgetdescr . This can be written in CPN as:

colset pmodel = list widgetdescr ;

colset WidgetName = with Display |
ONButton |
OFFButton;

colset Category = with ActCtrl |
Responder;

colset Behaviour = with S startmessage |
I ON |
I OFF |
Quit;

colset Behaviours = list Behaviour;

Table 2: Presentation Model Declarations of
the Simple Device in CPN

val Init = [(Display, Responder, []),
(ONButton, ActCtrl, [I ON]),
(OFFButton, ActCtrl, [I OFF])];

val ON = [(Display, Responder,
[S startmessage]),
(ONButton, ActCtrl, []),
(OFFButton, ActCtrl, [I OFF])];

val OFF = [(Display, Responder, []),
(ONButton, ActCtrl, [I ON]),
(OFFButton, ActCtrl, [Quit])];

Table 3: Presentation Model Definition of the
Simple Device in CPN

To define the component presentation model we will use the value declaration feature of CPN. A
value declaration binds a value to an identifier. The component presentation models for the simple
device of Figure 1 are given in CPN in Table 3. We can now see what the states of the device are
and what widgets are available to the user in every state and what the behaviours of those widgets
are. But to understand the navigational possibilities, it is always better to have some graphical
representation. Another model, i.e., a presentation and interaction model (PIM), is used for this
purpose.

5 Presentation Interaction Models

A presentation and interaction model (PIM) describes the transitions between states [6]. A PIM is
the combination of a presentation model and a finite state machine (FSM). A PIM gives a formal
meaning to I-behaviours given in the presentation model. The PIM is derived by creating a single
state for each of the component presentation models and creating transitions between states based
on the relevant I-behaviours, so transitions give the meaning of I-behaviours.

The PIM for the simple device in Figure 1 is given in Figure 2. There are three states: Init , ON
and OFF . Figure 1 show what states can be reached from a current state via those I-behaviours.

We now look at a way of expressing all this within CPN. The number of pages in a CPN model
of a PIM is the same as the number of component presentation models in the PIM. For example, the
simple device PIM shown in Figure 1 has three component presentation models, so there are three
pages in the CPN model of this device as shown in figure 3. These pages represent the individual
component presentation models. The names of the places are exactly the names of the component
presentation models. For the simple device, there are three places: Init , ON and OFF . These places
have fusion tags (in blue) named the same as the corresponding component presentation models
as shown in figure 3. The component presentation model Init has two I-behaviours, which means

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 7

Fig. 2: PIM of Simple Device Fig. 3: CPN model of PIM of Simple Device

that from the place Init a user can go to two other states ON and OFF . The page Init will have
three places: Init , ON and OFF where Init is the current state and ON and OFF are the states a
user can go to from Init . Every place in the model will be of one type, i.e. pmodel . The transitions
give formal meaning to the I-behaviours in the presentation model and have the same name as the
respective I-behaviours in the presentation model.

5.1 Formal Definition of CPN for modelling PM/PIM

In this section we formalize the definition of how we represent the combination of presentation
models and presentation interaction models.

Definition 6. A non-hierarchical Coloured Petri Net for modelling a PM/PIM combination is a

tuple (PM ,K ,P ,T , I ,CS ,A,C ,G ,E) such that:

(i) PM is a finite set of colour sets for representing presentation model declarations from the PM,

such that: PM = {WidgetName,Category ,Behaviour ,Behaviours,widgetdescr , pmodel}, where

– colset WidgetName = with wid1 | wid2 | ... | widn ;

• where wids are the names of the widgets in the various component presentation models in

PM.

– colset Category = with cid1 | cid2 | ... | cidn ;

• where cids are the names of the category of the widgets in the various component presen-

tation models in PM.

– colset Behaviour = with bid1 | bid2 | ... | bidn ;

• where bids are the names of the S-behaviours and I-behaviours associated with the widgets.

– colset Behaviours = list Behaviour ;
– colset widgetdescr = product WidgetName ⇤ Category ⇤ Behaviours;
– colset pmodel = list widgetdescr ;

(ii) K is a finite set of constants that represents the component presentation models by their names

and is such that Type[K] = pmodel .
(iii) P is a finite set of places, the same size as K , representing the component presentation models

where the names of the places and names of the constants are same.

8 Sapna Jaidka , Steve Reeves, and Judy Bowen

(iv) T is a finite set of transitions representing the I-behaviours of the PIM.

(v) I is an initialization function that assigns an initial marking to each place. The initialization

function I : P ! EXPR assigns an initialization expression I (p) to each place p such that:

I (p) = k 2 K , i.e., I (p) can be a constant, k , representing a component presentation model.

(vi) CS is a finite set of non-empty types, called colour sets with PM ✓ CS .

(vii) A is a finite set of arcs as given in definition 1.

(viii) C is a colour function. It is defined from P into CS as given in definition 1.

(ix) G is a guard function as given in definition 1.

(x) E is an arc expression function such that:

• For an arc (p, t) 2 A, connecting a place p 2 P and a transition t 2 T , it is required that

the arc expression E (p, t) is the constant k 2 K which represents the component presentation

model of the place p.

Having modelled the PM/PIM combination in CPN, we now move to modelling the functionality.

6 Z

Z is a formal specification language which is used to specify and model systems. Z specifications
can be recognized by the use of the schema. More detailed information can be found in [25] [10]. Z
operation schemas are used to give formal meaning to the S-behaviours of a presentation model. A
Z specification for the simple device in Figure 1 is as follows:

This definition introduces a type MESSAGE that contains (only) a value InitializingDevice.

MESSAGE ::= InitializingDevice

The schema SimpleDevice is the state space of the model. It says that in each state in the state
space there is one observation display which can have a value of type MESSAGE . In its initial
state, the value of the display is set to InitializingDevice. The schema Startmessage refers to the
S startmessage behaviour of the presentation model.

SimpleDevice
display : MESSAGE

Init
SimpleDevice

display = InitializingDevice

Startmessage
⌅SimpleDevice
display ! : MESSAGE

display ! = InitializingDevice

Now we have a Z specification that gives meaning to the S-behaviours in the presentation model.
As we will now see, instead of having three separate models, we can actually include the S-behaviours
(functionality) in the CPN model by expressing a Z in CPN and have a single model.

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 9

6.1 Expressing Z in CPN

In this section we will explain how the kinds of Z specification [10] used in the existing PM/PIM/Z
models can be expressed in CPN using colour sets, an initial expression and arc inscriptions. Notice
that we give rules for the small subset of Z which is adequate for our purposes. We do not need all
of Z to be modelled.
Cartesian Product: It is a type consisting of ordered pairs. We can use the product colour set of
CPN to represent such Z types and can be written in CPN as:

colset hz type namei = product hcolset name1i ⇤ hcolset name2i ⇤ ... ⇤ hcolset nameni;

where colset name1...colset namen are already defined colour sets which represent types in Z.
Built-in type: Z provides a single built-in type, namely the type of integers Z. We can write this
in CPN using the integer colour set. So the declarations

colset INT = int ; var n : INT ;

will create a colour set INT which defines INT as integers, and a variable n such that the value of
n is an integer.
Power sets: The power set operator P (giving “the set of all subsets” of a set) is an elementary
type constructor often used in Z. If we want to write such a type in CPN, then in this work we
have decided that the list colour set is used4. The syntax for writing power sets of Z based on this
decision in CPN is:

colset hz type namei = list hcolset namei;

Axiomatic Definition: If we have an axiomatic definition:

hours : PN

hours = 0 . . 24

This can be written in CPN as: colset hours = int with 0..24;
Z schemas: Z schemas are used to specify the state space and operations of the system. To write
the declaration part of a Z schema in CPN, we use the record colour set:

colsethZ i = record id1 : type1 ⇤ ... ⇤ idn : typen ;

where id1..idn are Z observations and type1..typen are their corresponding types (which are already
declared colour sets using the rules as explained above) as they appear in the declarations of the
schema we are modelling. The initialization schema of a Z specification is represented as an initial
marking in Coloured Petri Nets. The predicate part of a schema will give us expressions on arcs of
certain transitions, as we will see later.

4 We model only systems with finite components, so modelling the power set with lists is no restriction on
our expressiveness.

10 Sapna Jaidka , Steve Reeves, and Judy Bowen

6.2 Formal Definition of CPN for Modelling PM/PIM/Z

Definition 7. A non-hierarchical Coloured Petri Net for modelling a PM/PIM/Z model is a tuple

(Z ,PM ,K ,P ,T , I ,CS ,A,C ,G ,E) such that:

(i) Z is a finite set of colour sets representing the Z state schema of the original model with

declarations id1 : type1...idn : typen , such that: Z = {type1, type2, ..typen ,Z}, where colset type1
;.....colset typen ; colset Z = record id1 : type1⇤... ⇤ idn : typen ;

(ii) PM is a finite set of colour sets representing PM declarations as given in definition 6.

(iii) K is a finite set of constants representing component presentation models as in definition 6.

(iv) P is a finite set of places such that | P |=| K | +1. The constant k in the set K can be mapped

to the place p in the set of P with the same name. There is an additional place named Z that

represents the state schema.

(v) T is a finite set of transitions representing both I-behaviours and S-behaviours.

(vi) I is an initialization function that assigns an initial marking to each place.

(vii) CS is a finite set of non-empty types, called colour sets, with PM ✓ CS and Z ✓ CS .

(viii) A is a finite set of arcs as given in definition 6.

(ix) C is a colour function as given in definition 6.

(x) G is a guard function as given in definition 6.

(xi) E is an arc expression function such that:

– For an arc (p, t) 2 A, where t is an I-behaviour transition, it is required that the arc

expression E (p, t) is the name k 2 K which represents the component presentation model.

Similarly for a directed arc from a transition representing an I-behaviour to a place.

– For an arc (p, t) 2 A where p represents a state in the Z state space, and a transition

t 2 T , representing an S-behaviour, it is required that the arc expression E (p, t) assigns

each observation name appearing in S to a new, unique variable (say s).

7 Case Study: NIKI T34 Infusion Pump

The T34 is a compact and lightweight syringe pump used to deliver drugs. Figure 4 shows an image
of the pump. More information about the pump can be found in [12]. There are ten widgets in
the T34 infusion pump as shown in Figure 4 : LeftFFSK, RightBackSK, OnOffButton, UpPlusSK,

DownMinusSK, Display, NoStopSK, InfoSK, YesStartSK and Timeout.

Fig. 4: Niki T34 Syringe Pump

There is a total of nineteen states, one
of which the pump can be in at any given
point in time which are: LoadSyringe, Init,

BatteryLevel, SetVolume, SetDuration, Rate-

Set, RateConfirm, ConfirmSettings, StartIn-

fusingConfirm, Infusing, Paused, Inittwo, Re-

sume, InfusionStatus, BatteryStatus, EventLog,

ChangeSetUp and TimeOut . We can, typically,
get to know this by actually experimenting with
the device. We might also read the user man-
uals, but this is not recommended since user
manuals are, worryingly, notoriously unreliable
[7].

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 11

7.1 Modelling T34 pump in CPN

The declaration part of the presentation model is given in Table 4. WidgetName is an enumeration
type and represents the names of the widgets of the pump. Category is an enumeration type that
describes the categories of the widgets. Behaviour is an enumeration type that represents a set of
all behaviours. Because of space restrictions only a few of the full set of behaviours are given here5.
Behaviours is of type list, so a widget can have more than one behaviour. Behaviours is a list of
behaviours where the names of the behaviours is taken from the Behaviour colour set. widgetdescr
is of type product. It represents a triple (WidgetName, Category , [Behaviours]). pmodel is a list
colour set and represents the component presentation model. Now we look at the definition part of
the presentation model for the Niki T34 infusion pump. As there are nineteen states, the number
of component presentation models will be the same. We give component presentation models for
LoadSyringe and Info as representative of those for the whole T34 in Table 5.

colset WidgetName = with LeftFFSK | RightBackSK | OnOffButton | UpPlusSK | DownMinusSK |
Display | NoStopSK | InfoSK | Timeout | YesStartSK;

colset Category = with ActionControl | MValResponder | System | display;
colset Behaviour = with S SyringeWarnings | S MoveActuatorFwd | S ArmWarning |

I Init | S SyringeDisplay | S ScrollSyringeList | I SetVolume |...;
colset Behaviours = list Behaviour;
colset widgetdescr = product WidgetName * Category * Behaviours;
colset pmodel = list widgetdescr;

Table 4: Modelling of the presentation model declarations

val LoadSyringe = [(Display, MValResponder, [S SyringeWarnings]),
(InfoSK, ActionControl, [I Info]), (UpPlusSK, ActionControl, []),
(DownMinusSK, ActionControl, []), (YesStartSK, ActionControl,[]),
(NoStopSK, ActionControl, []),
(LeftFFSK, ActionControl, [S MoveActuatorFwd,S ArmWarning]),
(RightBackSK, ActionControl, [S MoveActuatorBwd, S ArmWarning]),
(OnOffButton, ActionControl, [Quit]), (Timeout, System, [I Init])];

val Info = [(Display, MValResponder, [S InfoList]),
(InfoSK, ActionControl, [S KeypadLock]),
(UpPlusSK, ActionControl, [S ScrollInfoListUp]),
(DownMinusSK, ActionControl, [S ScrollInfoListDown]),
(YesStartSK, ActionControl, [I BatteryLevel,I Init,I RateSet,I EventLog,I ChangeSetUp]),
(NoStopSK, ActionControl, [I Init]), (LeftFFSK, ActionControl, []),
(RightBackSK, ActionControl, []), (OnOffButton, ActionControl, [Quit, I Init]),
(Timeout, System, [])];

Table 5: CPN version of the PMs

5 See https://github.com/sapnajaidka/NikiT34-CPN-Model for complete details

https://github.com/sapnajaidka/NikiT34-CPN-Model

12 Sapna Jaidka , Steve Reeves, and Judy Bowen

colset YesNo = with yes | no;
colset SyringeBrand = with BDPlastipak;
colset PerCent = int with 0..100;
colset millilitres= int with 0..100;
colset millimeters = int with 0..10;
colset hours = int with 0..24;
colset minutes = int with 0..59;
colset millilitresperhour = int with 0..100;
colset Z = record BC:PerCent * KP:YesNo * PL:YesNo * TL:YesNo * BD: SyringeBrand *
SS: millilitres * VL: millilitres * PP : millimeters * SOK: YesNo * BCPOK: YesNo *
SR: YesNo * VTBI: millilitres * HH: hours * MM: minutes * IR: millilitresperhour;

Table 6: Colour sets and variables for T34 Pump

The complete Z specification for the T34 pump can be found in6. The Z types for the T34 pump
expressed in CPN are shown in table 6. YesNo is declared as the enumerated colour set that can
have exactly two values yes or no. SyringeBrand is declared as enumerated colour set with one
value BDPlastipak . PerCent , millilitres, millimeters, hours and minutes are declared as integer
colour sets. Z is a record colour set with a record of all the observations of the state schema with
their corresponding types. It represents the T34 state schema7. As the Z operation schemas would
be expressed as arc inscriptions so we need to declare variables which could be bound to different
values of their respective colour sets during simulation. There are fifteen variables BC , KP , PL,
TL, BD , SS , VL, PP , SOK , BCPOK , SR, VTBI , HH , MM and IR.

There are nineteen component presentation models for the Niki T34 infusion pump, therefore,
the CPN model of the pump has nineteen pages which are interconnected by fusion places. Using
the CPN Tool, we now create a model that shows all the states with I-behaviours (which show
navigational possibilities representing interactivity) and S-behaviours (which represent underlying
system functionality). The resulting CPN model has all the important aspects (functional, user-
interface and interaction) of the original PM/PIM/Z expressed within it.

The structure of the LoadSyringe page is shown in Figure 5. The three places: LoadSyringe,
Init and Info represent the states of the system. The marking on the place LoadSyringe shows
the definition of the LoadSyringe component presentation model which gives information about
the available widgets. The marking on the LoadSyringe page also shows that there are four S-
behaviours: S SyringeWarnings and S ArmWarning display warning messages on the screen and
S MoveActuatorBwd and S MoveActuatorFwd are the functions that move the syringe plunger
forward and backward. The Z specification8 for these S-behaviours are not modelled here to keep
the size of the state space small, so just the fusion place Z is added to the page and represents only
the Z Init schema.

6 https://github.com/sapnajaidka/Niki-T34-Z-specification
7 To make the description short and easy to read we have used abbreviated names for the Z observations.

In this declaration BC stands for BatteryCharge, KP is for KeyPadLocked , PL is for ProgramLocked ,
TL is for TechMenuLocked , BD is for Brand , SS is for SyringeSize, VL is for VolumeLeft , PP is for
PlungerPosition, SOK is for SyringeOK , BCPOK is for BarrelOK ,CollarOK ,PlungerOK , SR is for
SystemReady , HH is for Hours, MM is for Minutes and IR is for InfusionRate

8 See https://github.com/sapnajaidka/Niki-T34-Z-specification

https://github.com/sapnajaidka/Niki-T34-Z-specification
https://github.com/sapnajaidka/Niki-T34-Z-specification

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 13

The component presentation model for the LoadSyringe has two I-behaviours: I Init and I Info
as shown in Table 3 and as shown by the initial marking on that place, so there are two transitions,
namely I Init and I Info. Figure 5 clearly shows that from the LoadSyringe state, the user can go
to either the Init state or Info state by firing the transitions I Init or I Info.

In Figure 5, on the arc going into place/state Init , we have the expression Init which tells us
the relevant presentation model for this state and on the arc going into place Info, we have the
expression Info which tells us the relevant presentation model for the state Info. If the user asks for
information, i.e., if I Info transition is fired, then the user goes to the Info state. Figure 6 shows the

Fig. 5: LoadSyringe Page with Z

structure of the Info page. The Info state shows a list of options that a user can select to see status
and change settings. There are seven places in the Info page: Info, BatteryLevel , Init , ChangeSetUp,
Eventlog , RateSet and Z . The marking on the place Info is a token showing the definition of a
component presentation model Info which provides information about the available widgets and
tells us which button press results in what state. The marking shows that there are five I-behaviours
and four S-behaviours. As we are not modelling the S-behaviours which just display messages
on the screen, the page Info has just one S-behaviour transition S KeyPadLocked . There are six
transitions: I BatteryLevel , I ChangeSetUp, I Init , I EventLog , I RateSet and S KeyPadLocked .
These transitions give meaning to the I-behaviours and S-behaviours given for the definition of the
component presentation model Info.

If the user gives a long press to the Info button on the device, the keypad gets locked or unlocked.
This behaviour changes the value of the observation KP from no to yes and vice-versa. In the CPN
model, the transition S KeyPadLocked represents this behaviour. There are two arcs needed to
model this (going to and from the place Z). The arc from Z to S KeyPadLocked simply contains
assignments which set each variable to its current value (where the variables are the ones that
model the observations from the Z operation schema KeyPadLocked where they will appear on the
left of each equation in primed form). This set of assignments “picks up” the current values of the
variables ready to be used by the second arc. This second arc, the one from S KeyPadLocked to

14 Sapna Jaidka , Steve Reeves, and Judy Bowen

Fig. 6: Info Page with Z

Z , assigns each variable to its new value, as given by the right-hand side of each equation in the
KeyPadLocked operation schema. Taken together these two arcs express the intent of the equations
in the operation schema KeyPadLocked . Users can go to any of the five states by firing the I-
behaviour transitions which will update the markings on the corresponding places. If the value of
KP is yes, i.e., if the keypad is locked, then a user cannot go to any further possible states. For that
reason, we have a guard [KP = no] on transitions I BatteryLevel , I EventLog , I Init , I RateSet
and I ChangeSetUp. These transitions would not be enabled if the keypad is locked. In a similar
manner we model the rest of the pages9 which are interconnected via fusion places and a user can go
from one state to another by firing the I-behaviour transitions and the operations can be observed
by firing the S-behaviour transitions.

8 Benefits of Formal Method Integration

There are several benefits accruing from using CPN and its tool and combining what was previously
done via three different formalisms (PM/PIM/Z). First, CPNs have a simple graphical representa-
tion which is useful for illustrating the concepts, and the CPN Tool allows us to visualize the models
and structure them in useful ways. The CPN model provides a better understanding of how the
system will behave by means of interactive simulation which provides a way to walk through a CPN
model, investigating different scenarios in detail and checking whether the model works as expected.
9 See https://github.com/sapnajaidka/NikiT34-CPN-Model

https://github.com/sapnajaidka/NikiT34-CPN-Model

Formal Modelling of Safety-Critical Interactive Devices using Coloured Petri Nets 15

It is possible to observe the effects of the individual steps directly in the graphical representation of
the CPN model. The models in CPN can be used to specify different aspects (functional or control
flow) of a system and can specify different types (concurrent, sequential or distributed) of a system,
all in one model.

When we build a Coloured Petri Nets model, any non-determinism present can be exposed
and can be corrected. The appealing graphical representation of Coloured Petri Nets allows us to
consider all the navigational possibilities in a model. It gives a good indication of the complexity of
the user-interface and its navigation by way of the number of places and transitions. Having aspects
of Z modelled in CPN has benefits in the development process as a developer can have a better
idea of the user interface and interactivity as well as the functionality of a modelled system.

9 Conclusion and Future Work

We have used CPNs to model the user-interface and interaction of a medical infusion pump. This
shows the navigational properties of the system, but also allows us to include the underlying system
functionality in the model as well. By means of simulation we can actually see what widgets are
available and what happens when the user interacts with them. Also we can actually see how the
behaviours change the underlying system functionality. By these means we can check to see if the
model is working as expected. If it seems that it is not then we can look deeper and see what the
flaws are in the model and what changes should be made to make the model work correct in all
situations: this is the most important thing for safety-critical devices.

Now that we can build CPN models there are certain properties that can be verified with the
CPN’s state space analysis method. This method provides information about the dynamic properties
of a system, for example, dead transitions, and dead markings. It also gives information about the
fairness and liveness properties of a modelled system. Therefore it is possible to investigate the
behaviour of the system in sophisticated and useful ways: this includes the safety requirements of
the system. With the state space method, in conjunction with suitable queries, it is possible to
verify that queries hold, so safety requirements (like detecting livelocks, total reachability, desired
terminal states etc.) for safety-critical systems can be proved. In the future it would be interesting
to see if the safety properties proposed by the FDA10 can be proved using this combined model.

References

1. Arney, D., Jetley, R., Jones, P., Lee, I., Sokolsky, O.: Formal methods based development of a PCA
infusion pump reference model: Generic infusion pump (GIP) project. In: High Confidence Medical
Devices, Software, and Systems and Medical Device Plug-and-Play Interoperability, 2007. HCMDSS-
MDPnP. Joint Workshop on. pp. 23–33. IEEE (2007)

2. Barbosa, P.E., Morais, M., Galdino, K., Andrade, M.F., Gomes, L., Moutinho, F., de Figueiredo, J.C.,
et al.: Towards medical device behavioural validation using petri nets. In: Computer-Based Medical
Systems (CBMS), 2013 IEEE 26th International Symposium on. pp. 4–10. IEEE (2013)

3. Boudi, Z., Collart-Dutilleul, S., Khaddour, M., et al.: High level Petri Net modeling for railway safety
critical scenarios. In: 10th FORMS-FORMAT symposium, Formal Methods for Automation and Safety
in Railway and Automotive Systems. pp. p65–75 (2014)

10 See https://repository.upenn.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1938&
context=cis_reports

https://repository.upenn.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1938&context=cis_reports
https://repository.upenn.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1938&context=cis_reports

16 Sapna Jaidka , Steve Reeves, and Judy Bowen

4. Bowen, J.A.: Formal specification of user interface design guidelines. Ph.D. thesis, Citeseer (2005)
5. Bowen, J., Reeves, S.: Using formal models to design user interfaces: a case study. In: Proceedings of

the 21st British HCI Group Annual Conference on People and Computers: HCI... but not as we know
it-Volume 1. pp. 159–166. British Computer Society (2007)

6. Bowen, J., Reeves, S.: Formal models for user interface design artefacts. Innovations in Systems and
Software Engineering 4(2), 125–141 (2008)

7. Bowen, J., Reeves, S.: Modelling user manuals of modal medical devices and learning from the ex-
perience. In: Proceedings of the 4th ACM SIGCHI symposium on Engineering interactive computing
systems. pp. 121–130. ACM (2012)

8. Bowen, J., Reeves, S.: Generating obligations, assertions and tests from UI models. Proceedings of the
ACM on Human-Computer Interaction 1(EICS), 5 (2017)

9. Campos, J.C., Harrison, M.: Modelling and analysing the interactive behaviour of an infusion pump.
Electronic Communications of the EASST 45 (2011)

10. Derrick, J., Boiten, E.A.: Refinement in Z and Object-Z: Foundations and advanced applications (2014)
11. Dix, A.J., Runciman, C.: Abstract models of interactive systems. People and Computers: Designing the

interface pp. 13–22 (1985)
12. Electronics, C.M.: Niki T34 syringe pump instruction manual. ref. 100-090SS Edition (2008)
13. Jacob, R.J.: Using formal specifications in the design of a human-computer interface. Communications

of the ACM 26(4), 259–264 (1983)
14. Jaidka, S., Reeves, S., Bowen, J.: Modelling safety-critical devices: Coloured Petri Nets and Z. In:

Proceedings of the ACM SIGCHI Symposium on Engineering Interactive Computing Systems. pp.
51–56. ACM (2017)

15. Jensen, K.: Coloured Petri Nets: basic concepts, analysis methods and practical use, vol. 1. Springer
Science & Business Media (2013)

16. Jensen, K., Kristensen, L.M., Wells, L.: Coloured Petri Nets and CPN tools for modelling and validation
of concurrent systems. International Journal on Software Tools for Technology Transfer 9(3-4), 213–254
(2007)

17. Kristensen, L.M., Christensen, S., Jensen, K.: The practitioner’s guide to Coloured Petri Nets. Inter-
national Journal on Software Tools for Technology Transfer (STTT) 2(2), 98–132 (1998)

18. Kummer, O., Wienberg, F., Duvigneau, M., Köhler, M., Moldt, D., Rölke, H.: Renew–the reference net
workshop. In: Tool Demonstrations, 21st International Conference on Application and Theory of Petri
Nets, Computer Science Department, Aarhus University, Aarhus, Denmark. pp. 87–89 (2000)

19. Lakos, C.: From Coloured Petri Nets to Object Petri Nets. In: International Conference on Application
and Theory of Petri Nets. pp. 278–297. Springer (1995)

20. Martinie, C., Navarre, D., Palanque, P., Fayollas, C.: A generic tool-supported framework for coupling
task models and interactive applications. In: Proceedings of the 7th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. pp. 244–253. ACM (2015)

21. Masci, P., Ayoub, A., Curzon, P., Lee, I., Sokolsky, O., Thimbleby, H.: Model-based development of the
generic PCA infusion pump user interface prototype in PVS. In: International Conference on Computer
Safety, Reliability, and Security. pp. 228–240. Springer (2013)

22. Navarre, D., Palanque, P., Ladry, J.F., Barboni, E.: ICOs: A model-based user interface description
technique dedicated to interactive systems addressing usability, reliability and scalability. ACM Trans-
actions on Computer-Human Interaction (TOCHI) 16(4), 18 (2009)

23. Rukšėnas, R., Masci, P., Harrison, M.D., Curzon, P.: Developing and verifying user interface require-
ments for infusion pumps: A refinement approach. Electronic Communications of the EASST 69 (2014)

24. Silva, J.L., Ribeiro, O.R., Fernandes, J.M., Campos, J.C., Harrison, M.D.: The APEX framework:
prototyping of ubiquitous environments based on Petri Nets. In: International Conference on Human-
Centred Software Engineering. pp. 6–21. Springer (2010)

25. Smith, G.: The Object-Z specification language, vol. 1. Springer Science & Business Media (2012)
26. Turner, J.D.: Supporting interactive system testing with interaction sequences. Ph.D. thesis, The Uni-

versity of Waikato (2019)

Fortune Nets for Fortunettes: Formal, Petri nets-based,
Engineering of Feedforward for GUI Widgets

David Navarre1[0000-0002-2900-2056], Philippe Palanque1-2[0000-0002-5381-971X], Sven Cop-
pers3[0000-0002-5734-8898], Kris Luyten3[0000-0002-4194-1101] and Davy Vanacken3[0000-0001-8436-

5119]

1 ICS-IRIT, University of Toulouse, 118 Route de Narbonne, F-31062, Toulouse, France

2 Technical University Eindhoven, Department of Industrial Design, Eindhoven, Netherlands
3 Hasselt University - tUL - Flanders Make, Expertise Centre for Digital Media, Diepenbeek

Belgium
{navarre, palanque}@irit.fr ; firstname.lastname@uhasselt.be

Abstract. Feedback and feedforward are two fundamental mechanisms that sup-
ports users’ activities while interacting with computing devices. While feedback
can be easily solved by providing information to the users following the trigger-
ing of an action, feedforward is much more complex as it must provide infor-
mation before an action is performed. Fortunettes is a generic mechanism provid-
ing a systematic way of designing feedforward addressing both action and
presentation problems. Including a feedforward mechanism significantly in-
creases the complexity of the interactive application hardening developers’ tasks
to detect and correct defects. This paper proposes the use of an existing formal
notation for describing the behavior of interactive applications and how to exploit
that formal model to extend the behavior to offer feedforward. We use a small
login example to demonstrate the process and the results.

Keywords: Feedforward, formal methods, Petri nets, interactive systems engi-
neering.

1 Introduction

Feedback and feedforward are two fundamental mechanisms supporting users’ activi-
ties while interacting with computing devices. While feedback can be easily solved by
providing information to the users following the triggering of an action, feedforward is
much more complex as it must provide information before an action is performed. Au-
tomatic feedforward presents in a systematic way to the users what can be done without
requiring any dedicated action (e.g. greying out an interactive object that is not availa-
ble). Automatic feedforward is often available in well-designed interfaces. User-trig-
gered feedforward provides localized, contextual information to the users related to the
actions that they envision triggering (e.g. painting temporarily a selected object in yel-
low while hovering over the yellow button for painting objects). User-triggered feed-
forward is usually not available in user interface, as it requires computing the future

mailto:palanque%7d@irit.fr

2

state of the application (if a given action is performed) and presenting this future state
on the UI.

In [25], the authors exploit Norman’s activity theory [17] to explain the importance
and the impact of providing users with feedforward in user interfaces, especially in the
action selection phase. In poorly designed systems, that kind of user activity can be
very cumbersome especially in the upper part of the model of the activity theory (also
called semantic distance).

Fig. 1 presents a typical system offering limited feedforward. In that system (Mi-
crosoft Word) some of the commands for changing text graphical attributes do not pro-
pose feedforward (see Fig. 1 b) while others do (see Fig. 1 c)). Fig. 1 a) presents a
snapshot of MS Word software with the word Fortunettes selected and highlighted. In
that version of MS Word, when some text is selected, a contextual pop-up menu appears
next to the selected text. In Fig. 1 a) the cursor has been moved far away from the
selected text and thus no pop-up menu is visible. In Fig. 1 b) the pop-up menu is dis-
played and the mouse cursor hovers over the Bold command to change the presentation
of the text to Bold. However, in that case, no feedforward is presented so it is not pos-
sible to see how the text will be if the Bold command is performed. Surprisingly, Fig.
1 c) highlights the fact that for altering the color of the selecting text, hovering over one
of the colors displayed in the pop-up menu applies directly the hovered over color to
the selected text, thus providing users with feedforward on the color attribute of the
text.

a) b) c)

Fig. 1. Inconsistent availability of feedforward in Microsoft Word (Office 2016)

One of the questions that arises immediately is: why such a sophisticated tool as MS
Word is not offering feedforward mechanisms for all the functions or at least to all the
similar functions (e.g. changing attributes of selected text).

While, as highlighted in [10] and [25], the design of feedforward is an issue. We
would argue that its specification and its implementation are the key problem to solve
when it is considered as a potential function to add to the system. In that case, we would
argue that feedforward is a usability function using the pending concept of security
function [26] or safety function [13]. While a safety function can be defined as a func-
tion added to a system to prevent undesired safety problems, we would define a usabil-
ity function as a function added to an interactive system to prevent undesired usability
problems. Within this context, feedforward can be considered as a function similar to
“undo” and thus requires complex implementation due to its crosscutting nature [13].

3

This paper argues for the use of a formal approach for the specification and the imple-
mentation of feedforward in a systematic way. We present how the expressive power
of high-level Petri nets such as ICOs [16] can describe feedforward and how the result-
ing models are amenable to verification (to identify and check properties on the system
offering feedforward). In a nutshell we propose to produce a Petri net model (called
Fortune Net) in addition to the model describing the behavior of the application. We
also argue that a formal model of the initial application can be extended in a systematic
way to include feedforward functionality, thus reducing development cost of such a
usability function.

This paper is an extension of the work done in [7] to offer feedforward mechanisms
in a more general context. Section 2 presents the foundations, interaction and one de-
sign for the Fortunettes concept for feedforward usability function. Section 3 presents
the illustrative example of a simple widget-based interactive application that is used
throughout the paper. Section 4 presents the Petri nets based modeling approach for
modeling interactive applications and its application to the modelling of Fortunettes
usability function. Section 5 focusses on the formal analysis of the application model
and of the Fortune Nets ones. Section 6 concludes the paper and highlight paths for
future work.

2 Fortunettes: Design, Foundations and Use

The origin of Fortunettes [7] is the need of providing feedforward about the future state
of an application. When including a feedforward usability function in the GUI, the feed-
forward information does not need to be presented permanently (to avoid visual over-
load and cluttering of the UI) but instead we propose this specific information display
to be triggered by the user on demand (when needed). In our approach, exploring the
future may be seen as a four steps process:

• Look at the present, when the user explores visually the user interface elements;
• Peek into the future, when the user is considering performing an action;
• Go to the future, when the user confirms and actually executes the considered ac-

tion;
• Return to the present, when the user is no longer considering the execution of that

action.

The choice has been made of providing such feedforward at widget-level as it makes it
easier to reuse for any widget-based application. Fig. 2 shows an example of this kind
of widget-level feedforward: when the user hovers over the Login button (that is cur-
rently enabled), the button Logout and the text box (that are currently disabled), show
their future state in terms of availability (the button Logout and the textbox will be-
come enabled if the user clicks the button Login, while the button Login will become
disabled). With this information, the user knows that to enable the Logout button, the
Login button me be pressed first.

4

Fig. 2. Illustration of the Fortunettes concept using the case study.

The main idea of Fortunettes is to provide the user with an answer to “What will happen
if I do that?”, by presenting what the result of the user action will be, before the action
is actually performed. It thus requires the widgets to be able to present their future state
in addition to their current state (enabled or disabled).

As presented in [7], the user interface of the application presented in Fig. 2 is the
following:

- The application is composed of four widgets (the three buttons and a textbox),
- The current state of the widgets is displayed on the forefront, the login button is

enabled, “Logout” and “Send and Clear” ones are disabled, and the textbox is
disabled too.

- In order to present the feedforward information, users have to hover over the
widget of interest. In Fig. 2, the “login” button is hovered and the background
display of each widget presents the feedforward information showing the state
of the application if the user clicks on the login button. Current feedforward
display tells the user that “login” button will be disabled, the textbox will be-
come enabled, “logout” will become enabled and “Send and Clear” will remain
disabled. Indeed, as the status of “Send and Clear” will remain the same, no
additional feedforward display is presented. We follow here the parsimony prin-
ciple of user interface designs.

The design choice presented here is one example of the many possible designs of
Fortunettes: every widget is decorated with borders to express its future availability
(full lines for enabled, dashed lines for disabled) and/or its future values.

This design will not be further discussed as the focus of this paper is on formal de-
scription and engineering support. These two aspects are particularly important as the
introduction of Fortunettes increases the complexity of the development of an applica-
tion, and, by consequence its reliability.

3 Illustrative example

We illustrate the use of the Fortunettes approach with a simple application (as illus-
trated by Fig. 3) that behaves as follows: when the user is logged in, a message can be
written in the textbox or the user can log out. To ensure that the message only contains
letters, the edited text is filtered, removing any other characters (numbers, special char-
acters…). If the textbox is not empty, the message can be sent. Sending the message or
logging out clear the textbox.

5

Fig. 3. Screen shots of the illustrative application. On the left, the user is logged out, on the

right, the user is logged in and a message is being edited and ready to be sent.

4 Modelling of Fortunettes behavior

To support the engineering of interactive applications offering a feedforward usability
function based on Fortunettes, we propose an approach based on a formal description
technique called Interactive Cooperative Objects (ICO). We firstly present in this Sec-
tion the formal description technique, then we present how it is possible to derive the
feedforward behavior of the application from the existing model of the application be-
havior.
4.1 ICO formal description technique

The ICO formalism is a formal description technique dedicated to the modeling and the
implementation of event-driven interfaces [16], using a decomposition of communi-
cating objects to model the system, where both behavior of objects and communication
protocol between objects are described by the Petri net dialect called Cooperative Ob-
jects (CO) [4]. In the ICO formalism, an object is an entity featuring four components:
a cooperative object which describes the behavior of the object, a presentation part (i.e.
the graphical interface), and two functions (the activation function and the rendering
function) which connects the cooperative object and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the "input" aspects of the in-
teraction (i.e. how user actions impact the inner state of the application, and which ac-
tions are enabled at any given time) and its "output" aspects (i.e. when and how the
application displays state information that is relevant to the user).

This formal description technique has already been applied in the field of Air Traffic
Control interactive applications [16], space command and control ground systems [20],
or interactive military [3] or civil cockpits [2].

The ICO notation is fully supported by a CASE tool called PetShop [5, 21]. All the
models presented in the two next Sections (4 and 5) have been edited, simulated and
analyzed using PetShop tool.

4.2 Principle of Fortunettes feedforward modelling using ICO

As stated in Section 2, engineering an application with feedforward capabilities requires
to handle extra interaction events (at least three, depending on the widget type). These
events allow the user to peek into the future, to go to the future or to return to the
present, without affecting the standard behavior of the application, as the objective is

6

to enhance the application (with feedforward) and not to change it. This design choice
impacts the modelling of feedforward behavior:

• The feedforward behavior of any application is modelled as an independent object
that embeds the standard behavior (as a copy), making it fully compatible with the
original application behavior. This Petri net model is called the Fortune Net as it
allows users to look into the future of the application.

• For any event handling within the standard behavior, the feedforward behavior em-
beds a pattern described in Petri nets (a set of places and connected transitions) that
models the exploration of the future states. The important aspect in this modelling
principle is that we exploit the behavior of the application to forecast the future states
of the application if the user decides to use feedforward function.

To illustrate these two points, we use an excerpt of the complete behavior presented in
the next Section (4.3) that only concerns the login action on the user interface (as
shown by Fig. 4).

Fig. 4. Excerpt from the Petri net model of the standard behavior of the application: event han-
dling of the login action. In the transition, the text on the left describes the name of the transi-

tion while the text on the right describes the name of the event associated the transition.

In Fig. 4, the login transition is the event handler for an event called loginPer-
formed that represents the use of the button Login. When fired, this transition moves
the token from place LoggedOut () to place LoggedIn, setting the state of the
application to the new state following the execution of the login (code not represented
here).

When introducing the Fortunettes view on this action, the three base actions defined
in Section 2 (peek into the future, go to the future and return to the present) are repre-
sented as three extra event handlers, as shown on Fig. 5, where event handlers
{FloginPerformed, UFloginPerformed, InFloginPerformed} are gen-
erated from the event handler loginPerformed. In this paper, the name of the gen-
erated event handlers for handling Fortunettes mode are built with the name of the cor-
responding event handler, prefixed by F (that represents entering in Fortunettes mode,
e.g. peek into the future), by UF (that represents exiting the Fortunettes mode, e.g. re-
turn to the present) and InF (that represents exiting the Fortunettes mode and go to the
future).

Fig. 5. Extracted from the feedforward behavior of the application: event handling of the login

action and peek into its future.

7

On Fig. 5, transition f1login (event handler for FloginPerformed) represents
the action of peeking into the future of the action login. Basically, it behaves in the
same way as the original action (put a token in place LoggedIn) while the standard
behavior is still in state LoggedOut. It additionally puts a token in place flogin that
represents the entering in feedforward mode (a dedicated rendering may occur).

There are then two possibilities:

• The user decides to really perform the login action (using the login button),
producing two events: loginPerformed handled by the standard behavior (mak-
ing it going to the state LoggedIn) and InFloginPerformed handled by the
feedforward behavior (discarding the token in place flogin, while the token in
place LoggedIn does not move, placing it in the same state as the standard behav-
ior).

• The user decides to not perform the login action producing an event UFloginPer-
formed. The standard behavior remains in the same state while in the feedforward
behavior, the tokens from places LoggedIn and flogin are removed and a token
goes back to the place LoggedOut, making it return to its previous state (leaving
the feedforward mode).

This pattern is particularly efficient when describing a feedforward behavior for events
that do not handle values or when the widgets are simple such as button. For more
complex events, or when the underlying widgets are more complicated, this pattern has
to be modified/extended:

• When values are handled by the action of the widget, it is not always possible to
peek into the future of these values. One possible improvement is to proceed in two
steps. When entering the feedforward mode, an envisioned value must be produced
(decided at design time for instance) and when the user really performs the action, a
substitution must be done between the envisioned value and the real value. In the
feedforward behavior, this can be done by moving tokens (if it was the case in the
login example, the first token put in place LoggedIn by transition f1login would
have a design time envisioned value, and when f3login would be fired, this token
would have been removed and replaced by one holding the correct value).

• When the widget is more complex (in our case, the complexity is related to the event
production), extra event handlers may be introduced. For instance, when using a
classical textbox, one may be interested by the end of the text edition (validation)
and not by the whole process of typing in the text. In this case, in the standard be-
havior of the application, the only handled event would be the last one (for instance,
the event actionPerformed of the JTextField in Java Swing). On the feed-
forward behavior side, any text change may be relevant to allow the rendering of
text filtering.

Fortunettes requires enhancing widgets with extra means to allow rendering feedfor-
ward states and to trigger dedicated events. In our implementation using Java Swing
widgets, we embed them within a specialized decorator, but there are many other im-
plementation options at widget level or at application level.

8

4.3 Application of the modeling principle to the illustrative example

This Section presents the ICO models for both the standard application and its For-
tunettes enhancement. For each model, we present the behavioral part and the two user
interface description functions: the activation part and the rendering part.

Standard behavior.
Fig. 6 presents the entire behavior of the illustrative example. It may be divided into

two parts: the upper part is dedicated to login actions and the lower part is dedicated to
the message handling.

Fig. 6. Behavior of the Login example using the ICO formal description technique.

The upper part of Fig. 6 models what has been explained in the beginning of the Section
(see Fig. 4) to introduce Fortunettes and the modelling approach, including the com-
plete behavior of the application i.e. its functional code (inside the transitions). Another
difference is the way back from place LoggedIn to place LoggedOut when logging
out that clears the edited message (modification of the value of the token held by place
MessageToBeSent).

The lower part of Fig. 6 is dedicated to the message editing and to send it. Sending
it (transition sendAndClear) can only occur if the message is not empty (precondition
!message.isEmpty()). When it occurs, the token held by place Mes-
sageToBeSent is destroyed and a new token (with an empty string) is set to that
place. The message editing is represented by the transition editMessage that re-
ceives an event called edit, and this event holds a string value called sourceMes-
sage. This sourceMessage is then filtered resulting in a string message that only

9

contains characters that belongs to [a-z] and [A-Z] (For instance “a1b2c3” will
be transformed into “abc”) by the execution of the function replaceAll.

Table 1 represents the activation function of the application. It relates the event pro-
duction from the application and event handlers described using ICO. When the event
occurs, the corresponding transition is fired. If the transition is not available, the corre-
sponding event source must be disabled. This part of the functioning is assumed by the
activation rendering method (last column of Table 1) that is provided by the applica-
tion: for instance, setLoginEnabled changes the enabling of the button Login.

Table 1. Activation function for the ICO model of the Login example.

User Event Event handler Activation Rendering

Edit editMessage setEditEnabled
Login login setLoginEnabled
Logout logout setLogoutEnabled
Send sendAndClear setSendEnabled

Table 2 represents the rendering function of the application. It relates any state
change within the application behavior to rendering methods call. For instance, when a
token enters place MessageToBeSent, the string of this message is set in the text
box widget by calling the method showMessage.

Table 2. Rendering function for the ICO model of the Login example.

ObCS node name ObCS event Rendering method

MessageToBeSent marking_reset showMessage
MessageToBeSent token_enter showInitialMessage

Feedforward behavior.
Fig. 7 illustrates how feedforward information can be displayed using Fortunettes.

Fig. 8, Table 3 and Table 4 fully describe the feedforward part of the application. The
behavior presented by Fig. 8 is structured similarly to the standard behavior, the upper
part being dedicated to the login actions and the lower part, to the message editing.

Fig. 7. Illustration of the text filtering while typing in feedforward mode

This Fortune Net behaves according to the pattern explained in the previous Section
with the particularity of the filtering of the text while it is being typed in and not only
at the end of the interaction with the text box (transition f4editMessage in the lower

10

part of Fig. 8). This allows to present to the user what will happen to the edited value
if it is validated (e.g. press ENTER), as illustrated by Fig. 7.

Fig. 8. The Fortune Net describing the feedforward behavior of the Login example using the

ICO formal description technique.

Table 3 presents the activation of the feedforward behavior of the application. The in-
teresting part of this function is that the activation rendering is not related to the imme-
diate availability of the events, but to their availability in the future. Therefore, it does
not directly impact the application widgets but only calls functions that have been added
to render their Fortunettes appearance. For instance, on Fig. 7, if the edited text is val-
idated (e.g. pressing ENTER), the button “Send and Clear” will become available (rep-
resented by the rectangle around it, in the background).

11

Table 3. Activation function for the ICO model of the feedforward behavior of the example.

User Event Event handler Activation Rendering
Edit editMessage setFortunettesEditEnabled
Login login setFortunettesLoginEnabled
Logout logout setFortunettesLogoutEnabled
Send sendAndClear setFortunettesSendEnabled

Table 4 presents the rendering function of the feedforward behavior of the application.
This function first aims at making the application entering in feedforward mode (a to-
ken enters any of the places prefixed f) or at exiting the feedforward mode (a token
exits any of the paces prefixed by f). This function ensures too that when a new mes-
sage is under editing, it is rendered on the feedforward part of the interface (each time
a token enters the place MessageToBeSent, showFortunettesMessage is
called modifying what is rendered in the ENTER rectangle of the text box as illustrated
on Fig. 7)

Table 4. Rendering function for the ICO model of the feedforward behavior of the example.

ObCS node name ObCS event Rendering method
MessageToBeSent marking_reset showFortunettesMessage
MessageToBeSent token_enter showFortunettesInitialMessage
fEditMessage token_enter startRenderFortunettes
fEditMessage token_exit stopRenderFortunettes
fLogin token_enter startRenderFortunettes
fLogin token_exit stopRenderFortunettes
fLogout token_enter startRenderFortunettes
fLogout token_exit stopRenderFortunettes
fSendAndClear token_enter startRenderFortunettes
fSendAndClear token_exit stopRenderFortunettes

This interesting joint behavior between the standard behavior of the application and
its Fortunettes ones is highlighted on Fig. 7. Indeed, when the user types some text in,
it is rendered directly in the text box while the Fortunettes rendering displays the text,
as it will appear if the validation key is pressed. In the case of the login application, we
see that all the non-textual characters will be removed and the current text “He43llo”
will appear as “Hello” in the future.

5 Formal Analysis on the illustrative example

This Section is dedicated to the formal analysis of the models presented above. The fact
that we produce two different models for the same application (the standard application
model and the Fortune Net) has multiple implications. First, the standard application
models must exhibit some properties and it is important to check that they are true.
Second, the Fortune Net also needs to exhibit some properties (e.g. each time the user
triggers the “peek into the future” there must be two actions available: one to go into
that peeked future and one to come back to the current present. Third, the Fortune Nets
must implement a “similar” behavior as the standard application and thus we must
demonstrate their compatibility. For instance, it is important to demonstrate that all the

12

actions available in the models of the standard application are available in the Fortune
Net. This is only an example of the generic properties that have to be checked when a
feedforward usability function is added to an application.
With ICOs, as detailed in [24] and [19], there are two different techniques:

- The analysis of the underlying Petri net using results from Petri nets theory. This
analysis can be performed using methods and algorithms from the Petri nets
community such as the ones presented in [15].

- The analysis of the high-level Petri net (ICO) but this requires manual demon-
strations as some of the properties are undecidable [9].

Due to space constraints, we only present here properties that are based on the un-
derlying Petri net model. Some interesting results demonstrate that the high-level nature
of the Petri nets with objects only reduce the availability of transitions (for instance
when they feature pre-conditions) and thus in order for the high-level Petri net to be
live, the underlying Petri net must be live [4].
5.1 Formal analysis of the model of the standard behavior (Fig. 6)

Table 5 presents the list of traps and siphons of the model in Fig. 61. In a Petri net a
siphon is a set of places that never gain tokens whatever transition is fired while a trap
is a set of places that never lose tokens [8]. The fact that all the places in the model are
both traps and siphons demonstrate that the number of tokens in the model will remain
the same as the one in the initial state i.e. two tokens (see Fig. 6).

Table 5. Siphons and Traps from the standard behavior of the application.

Siphons Traps
MessageToBeSent MessageToBeSent

LoggedIn, LoggedOut LoggedIn, LoggedOut

Table 6 analysis is based on the calculation of transition invariants and place invariants.
As can be seen all the places in the model belong to a place invariant which means that
the total number of tokens in the places of the models will remain the same. One inter-
esting piece of information is that place MessageToBeSent is a single place in a P-
invariant. This means that whatever transition is fired the number of tokens in that place
will always be the same as the one of the initial marking. In the current example, this
means that the place MessageToBeSent will always be marked by a single token.

Table 6. Transitions and Place Invariants from the standard behavior of the application.

T-Invariants P-Invariants

1 sendAndClear 1 LoggedIn, 1 LoggedOut

1 editMessage 1 MessageToBeSent

1 login, 1 logout

1 The computing of the results in those tables was done using Petshop tool and are not presented

due to space constraints. How to make such computing is presented in [8].

13

In terms of behavior, transitions login and transition logout belong to the same t-
invariant which means that, if they can be made available from the initial state, there
always exists a sequence of transitions in the Petri net to make them available. Their
connection with the P-invariant {1 LoggedIn, 1 LoggedOut} (with a bounded value of
one token) demonstrates that always one of the two transition will be available and they
will never be available at the same time.

5.2 Formal analysis of the Fortune Net (Fig. 8)

We will not detail the analysis of the Fortune Net, but it is important to check that the
properties true in the application model are still holding in the Fortune Net.

If we take as example the property of the mutual exclusion of login and logout tran-
sitions, we can easily see in Table 7 and Table 8 that the places and the transitions
belong are also listed in siphons, traps, P-invariants and T-invariants.

Table 7. Siphons and Traps from the feedforward behavior of the application.

Siphons Traps
MessageToBeSent MessageToBeSent
LoggedIn, LoggedOut LoggedIn, LoggedOut

Of course, the Fortune Net is more complex and should also exhibit specific properties
related to its own semantics. A very simple but important one is that whenever the user
triggers a transition to peek into the future (name starting with f1) immediately after a
transition to come back to present (name starting with f2) and a transition to go into the
future (name starting with f3) will be available. The analysis results in Table 8 demon-
strate that a Fortune Net always verifies this fundamental property (any of such transi-
tions is always in a T-Invariant with each other).

Table 8. Transitions and Place Invariants from the feedforward behavior of the application.

T-Invariants P-Invariants

1 f4editMessage 1 LoggedIn, 1 LoggedOut

1 f1logout, 1 f3logout, 1 login 1 MessageToBeSent

1 f1login, 1 f2login

1 editMessage

1 f1editMessage, 1 f2editMessage

1 f1sendAndClear, 1 f3sendAndClear

1 f1sendAndClear, 1 f2sendAndClear

1 f1logout, 1 f2logout

1 login, 1 logout

1 f1login, 1 f3login, 1 logout

1 f1login, 1 f1logout, 1 f3login, 1 f3logout

1 sendAndClear

14

1 f1editMessage, 1 f3editMessage

1 f1login, 1 f1logout, 1 f2login, 1 f3logout, 1 login

1 f1login, 1 f2login, 1 login, 1 logout

6 Related work

As highlighted in [22] many formal approaches to support the design, specification and
verification of interactive systems have been proposed. That book chapter highlights
four criteria to compare those approaches: 1) Modeling coverage (how much of the
interactive systems can the notation describe); 2) Properties (and their type) supported;
3) Application of the methods in which domain; 4) Scalability (is the notation able to
deal with large scale interactive systems).

With respect to the modelling need of Fortunettes, the expressive power of the nota-
tion to be used heavily depends on the interactive application itself and does not require
specific modelling power. With that respect, if the interactive application does not fea-
ture concurrent behavior, dynamic instantiation of objects and does not exhibit quanti-
tative time behavior, automata would be adequate for describing Fortunettes behavior
as demonstrated in [7]. If more complex behaviors need to be represented, more ex-
pression power will be required. The table 1 from the book chapter [22] would be then
of great help to select the modeling notation.

As Fortunettes feedforward concept is meant to be applied in a systematic way to all
the interactions in an interactive system, Fortune Nets need to cover all the aspects of
the interactive (from the low-level interaction technique to the functional core accord-
ing to the MIODMIT architecture [14]. We have only presented here Fortunettes at the
application level, but all the layers of the architectures should be taken into account.

7 Conclusion and perspectives

While research in the field of HCI focuses on adding more functionalities to the user
interface, the interaction techniques and the interactive applications to improve usabil-
ity and user experience, very little work is spent on transferring these improved inter-
actions to the developers of interactive systems. For instance, papers proposing bubble
cursor for improving target acquisition [11] or marking menus [12] to improve com-
mand selection do not present means for engineering these interaction techniques in a
reliable and systematic way.

This paper has proposed an engineering method based on formal methods to support
the systematic integration of Fortunettes concepts to provide interactive application
with feedforward mechanisms. While the graphical and interaction design of For-
tunettes might be improved and could be subject of future research, we have demon-
strated that the use of a Petri nets-based approach limits the complexity of adding For-
tunettes behavior to an existing application. We have also demonstrated that a formal
approach can provide benefits in ensuring that the application with the additional feed-
forward behavior remains behaviorally compatible with the initial application.

15

The work presented in the present paper leads to extensions that should be addressed
in future work. First, the current design of Fortunettes only deals with WIMP interac-
tion techniques based on a set of identified widgets. While this can be seen as a strong
limitation for current user interfaces targeting at better user experience, it is important
to note that many applications are still widget-based. In some critical domains it is even
not possible to embed other types of interfaces as required by the ARINC 661 specifi-
cation standard [1] for user interfaces of cockpits of large civil aircrafts. We have pre-
viously worked on the formal description of User Application, user interface widgets
and servers using Petri net based description [2] and that early work can directly benefit
from the work presented in the paper. This means that adding the feedforward usability
function to those user applications will result in very limited work (as the Fortune Net
is built upon the original behavior and is described with the same language) and would
come with assurance means to guarantee their correct behavior.

Second, the current behavior of Fortunettes is to offer the possibility to the user to
look only one step into the future. The model-based behavior presented in the paper
could be exploited further to look into several step or even to look at the eventual end
of the execution, as introduced in [19]. For instance it would be possible to identify a
widget (via formal analysis) that would become unavailable forever in five steps from
the current state of the application .While graphical design and interaction will be
clearly a difficult challenge, the engineering of such applications could be reachable
via the analysis of the formal models.

References

1. ARINC 661. Cockpit Display System Interfaces to User Systems. ARINC Specifica-
tion 661-5. AEEC, 2013

2. Barboni E., Conversy S., Navarre D. & Palanque P. Model-Based Engineering of Widgets,
User Applications and Servers Compliant with ARINC 661 Specification. 13th conf. on De-
sign Spec. and Verif. of Interactive Systems (DSVIS 2006), LNCS Springer Verlag. p25-38

3. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A Model-Based Approach
for Real-Time Embedded Multimodal Systems in Military Aircrafts. Sixth International
Conference on Multimodal Interfaces (ICMI'04) October 14-15, 2004, USA, ACM Press.

4. Bastide R., Sibertin-Blanc C., Palanque P. Cooperative objects: A concurrent, petri-net
based, object-oriented language. IEEE Systems Man and Cybernetics Conference-SMC
1993, 286-291

5. Bastide, R., Navarre, D., Palanque, P.: A Model-based Tool for Interactive Prototyping of
Highly Interactive Applications. CHI ’02 Extended Abstracts on Human Factors in Compu-
ting Systems. pp. 516–517. ACM, , USA (2002).

6. Canfora G. and Luigi Cerulo. 2005. How Crosscutting Concerns Evolve in JHotDraw. In
Proceedings of the 13th IEEE International Workshop on Software Technology and Engi-
neering Practice (STEP '05). IEEE Computer Society, Washington, DC, USA, 65-73.

7. Coppers, S., Luyten, K., Vanacken, D., Navarre, D., Palanque, P., Gris, C. Fortunettes: Feed-
forward about the Future State of GUI Widgets. Proceedings of the ACM on Human-Com-
puter Interaction vol:3. ACM SIGCHI.

8. David R., Alla H. Petri nets and grafcet - tools for modelling discrete event systems. Prentice
Hall 1992, ISBN 978-0-13-327537-7, pp. I-XII, 1-339

javascript:void(0)
javascript:void(0)
https://dblp.uni-trier.de/pers/hd/a/Alla:Hassane

16

9. Dietze R., Kudlek M., Kummer O. Decidability Problems of a Basic Class of Object Nets.
Fundam. Inform. 79(3-4): 295-302 (2007)

10. Djajadiningrat T., Kees Overbeeke, and Stephan Wensveen. 2002. But how, Donald, tell us
how?: on the creation of meaning in interaction design through feedforward and inherent
feedback. Conference on Designing interactive systems: processes, practices, methods, and
techniques (DIS '02). ACM, New York, NY, USA, 285-291.

11. Grossman T. and Balakrishnan R. 2005. The bubble cursor: enhancing target acquisition by
dynamic resizing of the cursor's activation area. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI '05). ACM, DL, 281-290.

12. Kurtenbach G. and Buxton W. 1994. User learning and performance with marking menus.
Conference on Human Factors in Computing Systems (CHI '94). ACM DL, 258-264.

13. Lee S. & Yamada Y. (2010) Strategy on Safety Function Implementation: Case Study In-
volving Risk Assessment and Functional Safety Analysis for a Power Assist System, Ad-
vanced Robotics, 24:13, 1791-1811

14. Martin Cronel, Bruno Dumas, Philippe A. Palanque, Alexandre Canny. 2018. MIODMIT:
A Generic Architecture for Dynamic Multimodal Interactive Systems. In Proc. of IFIP
TC13.2 Conference on Human Centered Software Engineering, HCSE 2018, 109--129.

15. Murata T. Petri nets: Properties, analysis and applications. Proceedings of the IEEE (Vol-
ume: 77 , Issue: 4 , Apr 1989)

16. Navarre D., Palanque P., Ladry J-F. & Barboni E. ICOs: A model-based user interface de-
scription technique dedicated to interactive systems addressing usability, reliability and
scalability. ACM Trans. Comput.-Hum. Interact., 16(4), 18:1–18:56. 2009.

17. Norman, D. A. The Psychology Of Everyday Things. Basic Books, New York, USA, June
1988

18. Palanque P., Bastide R., Dourte L.Contextual Help for Free with Formal Dialogue Design.
In Proceedings of HCI International (2) 1993: 615-620

19. Palanque P., Bastide R., Sengès V. Validating interactive system design through the verifi-
cation of formal task and system models. IFIP WG 2.7, working conference Engineering
HCI, 1995, Springer,189-212

20. Palanque P., Bernhaupt R., Navarre D., Ould M. & Winckler M. Supporting Usability Eval-
uation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Us-
ing Petri net Based Formal Specification. Ninth Int. Conference on Space Operations, Italy,
June 18-22, 2006.

21. Palanque P., Ladry J-F, Navarre D. & Barboni E. High-Fidelity Prototyping of Interactive
Systems can be Formal too 13th Int. Conf. on Human-Computer Interaction (HCI Interna-
tional 2009) LNCS, Springer.

22. Raquel Oliveira Prates, Philippe A. Palanque, Benjamin Weyers, Judy Bowen, Alan J. Dix.
State of the Art on Formal Methods for Interactive Systems. Handbook of Formal Methods
in Human-Computer Interaction 2017: 3-55

23. Sadasivan S., Joel S. Greenstein, Anand K. Gramopadhye, and Andrew T. Duchowski. 2005.
Use of eye movements as feedforward training for a synthetic aircraft inspection task. Con-
ference on Human Factors in Computing Systems (CHI '05). ACM, 141-149.

24. Silva J-L, Fayollas C., Hamon A., Palanque P., Martinie C., Barboni E. Analysis of WIMP
and Post WIMP Interactive Systems based on Formal Specification. ECEASST 69 (2013)

25. Vermeulen J., Kris Luyten, Elise van den Hoven, and Karin Coninx. 2013. Crossing the
bridge over Norman's Gulf of Execution: revealing feedforward's true identity. SIGCHI
Conference on Human Factors in Computing Systems (CHI '13). ACM, USA, 1931-1940

26. Yoon C., Taejune Park, Seungsoo Lee, Heedo Kang, Seungwon Shin, and Zonghua Zhang.
2015. Enabling security functions with SDN. Comput. Netw. 85, C (July 2015), 19-35.

https://dblp.uni-trier.de/pers/hd/d/Dietze:Roxana
https://dblp.uni-trier.de/pers/hd/k/Kudlek:Manfred
https://dblp.uni-trier.de/db/journals/fuin/fuin79.html#DietzeKK07
https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=5
https://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=911
https://dblp.uni-trier.de/pers/hd/b/Bastide:R=eacute=mi
https://dblp.uni-trier.de/pers/hd/d/Dourte:Louis
https://dblp.uni-trier.de/db/conf/hci/hci1993-2.html#PalanqueBD93

Model-Based Testing of Post-WIMP Interactions Using
Object Oriented Petri-nets

Alexandre Canny1, David Navarre1, José Creissac Campos2 and Philippe Palanque1

1 ICS-IRIT, Université Paul Sabatier – Toulouse III, Toulouse, France
2 HASLab/INESC TEC & Department of Informatics/University of Minho, Portugal

{alexandre.canny,navarre,palanque}@irit.fr, jose.campos@di.uminho.pt

Abstract. Model-Based Testing (MBT) relies on models of a System Under Test
(SUT) to derive test cases for said system. While Finite State Machine (FSM),
workflow, etc. are widely used to derive test cases for WIMP applications (i.e.
applications depending on 2D widgets such as menus and icons), these notations
lack the expressive power to describe the interaction techniques and behaviors
found in post-WIMP applications. In this paper, we aim at demonstrating that
thanks to ICO, a formal notation for describing interactive systems, it is possible
to generate test cases that go beyond the state of the art by addressing the MBT
of advanced interaction techniques in post-WIMP applications.

Keywords: Post-WIMP Interactive Systems, Software Testing, Model-Based
Testing.

1 Introduction

Model-Based Testing (MBT) of software (called SUT: System Under Test) relies on
explicit behavior models of a system to derive test cases [28]. The complexity of deriv-
ing comprehensive test cases increases with the inner complexity of the SUT that re-
quires description techniques with an important expressive power. The modelling of
post-WIMP (Windows, Icons, Menus and Pointers) interactive applications (i.e. appli-
cations with an interface not dependent on classical 2D widgets such as menus and
icons [29]) proves to be a challenging activity as pointed out by [14]. For instance,
when using a touch screen, each finger down/up is a virtual input device being added
or removed from the systems at runtime and behaves in parallel with the other fingers
or input devices. A modelling technique able to describe such interactive systems must
support the description of dynamicity.

Beyond the problem of describing the SUT behavior, testing Graphical-User Inter-
face, whether it is WIMP or post-WIMP, is known to be a complex activity [9], espe-
cially because of the unpredictability of the human behavior as well as the virtually
infinite number of possible interaction sequences. To face such difficulty, model-based
testing techniques have been developed to try to generate relevant test sequences with-
out relying on manual scripting or capture and replay of tester’s interactions.

2

The massive adoption of touch screens means advanced touch interactions (e.g.
swipe, pinch-to-zoom, etc.) gained in popularity, while most of the existing MBT tech-
niques for interactive applications are designed to deal with events performed on the
standard GUI widgets (e.g. button, combo box, etc.) [1][9][15][27]. Lelli et al. [15]
identified the need for new MBT techniques for post-WIMP applications by highlight-
ing the need for supporting ad-hoc widgets (i.e. non-standard widgets developed spe-
cifically for the application) and advanced interaction techniques.

In this paper, we propose to build upon the work of Hamon et al. [14], which used
the ICO [20] formal modelling technique to describe post-WIMP interactive systems,
as a support to the generation of test cases for interaction techniques of post-WIMP
applications and to demonstrate that testing can be conducted following the standard
process for Model-Based Testing proposed in [28]. As interaction techniques have to
cope with the high dynamicity of Input/Ouput, as well as temporal aspects, they prove
to be one of the most difficult components of interactive systems to be described. Thus,
they are the prime focus of this paper, even though we will highlight that our proposed
approach applies to other components of the interactive systems’ architecture as well.

This paper is structured as follows: Section 2 presents related work on the MBT of
interactive applications; Section 3 introduces the interaction technique on which we
propose to apply the approach and its modelling in ICO; Section 4 discusses the gener-
ation of the test cases from the ICO specification and Section 5 provides some com-
ments on test execution; Section 6 discusses the generalizability of the proposed ap-
proach to other components of the SUT; Section 7 concludes the paper by discussing
future work.

2 Related Work

The classical approaches to interactive applications testing consider that the user’s in-
teraction takes place at the GUI widget level (e.g. buttons, icons, label, etc.). While it
is the case in the WIMP paradigm, this assertion cannot be used in the post-WIMP
paradigm where “at least one interaction technique is not dependent on classical 2D
widgets such as menus and icons” [29]. Consider a gesture-based (post-WIMP) draw-
ing tool. One may want to define (and test) whether moving two fingers on the drawing
area means zooming (pinch-to-zoom), rotating or drawing. As this may be determined
by how the user effectively moves his/her fingers (speed, angle, pressure level, delay
between finger down events, etc.), it goes beyond available standard testing techniques
for widget level interactions.

In this section, we first introduce the process of MBT and discuss the existing Model-
Based Testing techniques for WIMP applications. We then discuss the testing of post-
WIMP applications in order to highlight challenges to overcome.

2.1 The Process of Model-Based Testing

In their Taxonomy of Model-Based-Testing Approaches, Utting et al. [28] present the
model-based testing process illustrated by Fig. 1. In this process, a model of the SUT

3

is built from informal requirements or existing specification documents (Fig. 1.(1)) and
test selection criteria (Fig. 1.(2)) are chosen to guide the automatic test generation to
produce a test suite that fulfils the test policy defined for the SUT. These criteria are
then transformed (Fig. 1.(3)) into a test cases specification (i.e. a high-level description
of a desired test case). Utting et al. [28] use the example of test case specification using
state coverage of a finite state machine (FSM). In such case, a set of test case specifi-
cation {reach s0, reach s1, reach s2…} where s0, s1, s2 are all the states of the FSM is
the test case specification.

Fig. 1. The process of Model-Based-Testing (from [28])

Once the model and the test case specifications are defined, a set of test cases is
generated with the aim of satisfying all the test case specifications (Fig. 1.(4)). With
the test suite generated, the test cases are executed (either manually -i.e. by a physical
person- or automatically thanks to a test execution environment). This requires concre-
tizing the test inputs (Fig. 1.(5-1)) and comparing the results against expected ones to
produces a verdict (Fig. 1.(5-2)).

2.2 Model-Based Testing of WIMP Application

In software engineering, the nearly three-decades-old field [1] that addresses concerns
regarding the testing of user interfaces is called “GUI testing”. In [1] GUI testing is
defined as performing sequences of events (e.g., “click on button”, “enter text”, “open
menu”) on GUI widgets (e.g., “button”, “text-field”, “pull-down menu”). For each se-
quence, the test oracle checks the correctness of the state of the GUI either after each
event or at the end of the sequence. Since the domain is three-decade-old, it naturally
focused on WIMP UIs as they were the only available at the time. This focusing is still
quite present today.

Some of the research works presented in the following paragraphs do not follow the
process of MBT presented by Utting [28], but they propose relevant and inspiring ap-
proach for WIMP application testing.

Memon et al. [17] propose a detailed taxonomy of the Model-Based techniques em-
ployed to generate test cases in GUI testing. These techniques rely on various kinds of

4

models (state machine, workflow, etc.) that target mono-event-based systems (i.e. sys-
tems on which UI events are produced directly as a result of a single action on a widget:
key typed, mouse clicked, etc.). They describe the possible test cases by checking reach-
ability of a node. It is important to mention that most of the techniques listed in [17]
rely on models built by reverse engineering of the SUT [24].

Another approach based on reverse engineering is the one of Morgado et al. [19] in
the iMPAcT tool. This tool uses patterns of common behavior on Android applications
to automatically test them. The tool explores the SUT checking for UI patterns using a
reverse engineering process. Each UI pattern has a corresponding testing strategy (a
Test Pattern) that the tool applies.

Bowen et al. [7] adopt the test-first development approach in which abstract tests are
built from formal specification of the system functionality (given using Z) and from a
presentation model describing the interactive components (widgets) of the user inter-
face. These abstract test cases are used to produce JUnit and UISpec4J1 test cases.

Finally, Campos et al. [8] propose an example of approach that matches the outlines
of the MBT-process by using task models to perform scenario-based testing of user-
interfaces coded in Java using the Synergistic IDE Toucan [16]. The conformance be-
tween the application code and the task models is checked at runtime thanks to annota-
tions in the Java code that allow the association of methods calls to the Interactive Input
and Output Tasks. The scenarios produced from the task model are then played auto-
matically on the Java application.

2.3 Model-Based Testing of post-WIMP Application

Testing post-WIMP applications requires going beyond GUI testing as mentioned by
Lelli et al. [15]. This requires considering ad-hoc widgets and complex interaction tech-
niques that cannot be performed simply as sequences of events on GUI widgets. For
instance, interactions such as gesture-based or voice command activations are not tied
to a specific GUI widget.

One of the main references in post-WIMP application testing is Malai [15] that has
been proposed as a framework to describe advanced GUI Testing. It allows to describe
the interaction using Finite State Machine (FSM) with two types of end state: terminal
state and aborting state. These states are dedicated to identifying whether the user com-
pleted the interaction or aborted it. The output actions associated with completing the
interaction (i.e. reaching its terminal state) are described in a specific reification of tools
called instruments.

However, the use of FSM limits the description of interaction techniques and should
be enhanced to support:

x The description of dynamic instantiation of physical and virtual in-
put/output devices: on systems with a touchscreen, the display is a physi-
cal output device and the touch layer the physical input device. When deal-
ing with multi-touch interaction, a finger is a virtual device that is added/re-
moved whenever it touches the screen or is removed from it;

1 https://github.com/UISpec4J/UISpec4J

https://github.com/UISpec4J/UISpec4J

5

x The analysis of qualitative temporal aspect to verify that the description
supports functional requirements expressed in temporal logic (e.g. when-
ever the play button is enabled, the stop button is disabled);

x The description of dynamic user interface behavior such as animations
during transition between states of the system;

x The system configuration as for instance, using resolution scaling on dis-
plays with high pixels densities affects the size, location and translation of
the GUI elements on screen. Beyond, this also applies to mobile and web-
based UI in which having a responsive-design behaving properly is a con-
cern.

While advances have been made in the description of such aspect, especially in work
such as [14], there are not, to the best of our knowledge, techniques taking advantages
of them to generate tests cases for interactive applications. In the following of the paper,
we introduce and use the ICO formalism to demonstrate the need for advanced model-
ling techniques for effective testing of interactive applications.

3 Modelling of a Post-WIMP Case Study Using ICO

In this section, we present an architecture for post-WIMP applications and highlight
where the interaction techniques take place. We then present the informal requirements
for the “finger clustering” interaction technique used as a case study in the remaining
of this paper. Thereafter, we introduce the formal description technique we use, ICO
[20], and present the models associated to the “finger clustering” interaction technique.

3.1 Architecture of a Post-WIMP Application

Effectively testing an interactive application requires a good understanding of its archi-
tecture and of the role of its components to select appropriate test criteria [9]. While a
detailed architecture such as MIODMIT [10] is able to describe in detail the hardware
and software components of interactive systems, we use in this paper a simpler software
architecture (inspired by ARCH [3]) for touch applications, presented in Fig. 2, to detail
the role of the component we focus on. The work presented in the remaining of this
paper is still applicable to a more complex architecture.

Fig. 2. Example of architecture of a post-WIMP application [13].

6

As this paper discusses specific aspects of post-WIMP application, we do not detail
the “back-end” of the application, or Functional Part (leftmost part of Fig. 2). The Di-
alogue Part of the application shares a common role in WIMP and post-WIMP appli-
cations, i.e. translating high-level events resulting of the user interaction into invoca-
tions on the Functional Part. The main difference between WIMP and post-WIMP ap-
plications then resides in the Window Manager that contains, from right to left, the
widgets (that share similar roles to widgets of WIMP interfaces), the Interaction Tech-
nique, the Logical Input Device and the Low-Level Transducer.

The Low-Level Transducer is connected to the Touch Provider (rightmost part of
Fig. 2), i.e. the driver of the touch screen. The Touch Provider produces the lowest-
level events in the input chain as they are directly derived from the touch screen behav-
ior. The role of the Low-Level Transducer is to handle these low-level events and to
translate them to make sense for the Window Manager logic. On touch applications,
the Low-Level Transducer creates Logical Input Devices (i.e. Fingers) with unique IDs
and additional information (coordinates, pressure level, etc.). The Logical Input De-
vices are added to the Window Manager Interaction Technique(s) that will notify widg-
ets and other subscribers (such as a drawing panel) using high-level events when either
simple (e.g. tap) or complex (e.g. pinch) interactions are performed.

While this paper focus on the testing of the Interaction Technique, i.e. on verifying
that for a set of Logical Input Device actions, the correct high-level events are produced,
we highlight the applicability of our methods to the other components of the architec-
ture and on integration testing of these components.

3.2 Presentation of the “Finger Clustering” Interaction Technique

The case study we use in this paper is a multi-touch interaction technique that produces
events when fingers are clustered (i.e. within a given range of each other) and de-clus-
tered according to the requirements presented below. These requirements are the inputs
for the MBT Process (top-right of Fig. 1):

x Clusters may either contain two or three fingers;
x Clusters of three fingers are always created in priority over clusters of two

fingers (i.e. if 4 fingers are on the screen in a range suitable for creating a
cluster of 3 fingers, a three finger cluster will be created with a finger left
alone; in no occasion such circumstance may lead to the creation of two clus-
ters of two fingers);

x The distance between two fingers must be under 100 pixels to create a 2 finger
clusters;

x Clusters of three fingers are created when three fingers on the screen form a
triangle with each of its edges measuring less than 100 pixels. If it happens
that two fingers of an existing cluster of 2 fingers can be part of a three fingers
cluster, then the three fingers cluster is created, removing the 2 fingers cluster.

x Clusters of 2 fingers are de-clustered whenever the distance between the 2
fingers it contains goes over 150 pixels;

x Clusters of 3 fingers are never de-clustered because of the length of the edges
of the triangle;

7

x Clusters of 3 fingers are automatically de-clustered after 5 seconds;
x All the clusters cease to exist, producing the corresponding de-clustering

event, whenever a finger contained in this cluster is removed from the screen.
The events produced by this interaction technique are the following ones: twoFin-

gersClustered, twoFingersDeclustered, threeFingersClustered, threeFingersDeclus-
tered.

3.3 ICO: A Formal Description Technique Dedicated to the Specification of
Interactive Systems

The ICO formalism is a formal description technique dedicated to the specification of
interactive systems [20]. It uses concepts borrowed from the object-oriented approach
(dynamic instantiation, classification, encapsulation, inheritance and client/server rela-
tionship) to describe the structural or static aspects of systems and uses high-level Petri
nets to describe their dynamic or behavioral aspects.

ICOs are dedicated to the modeling and the implementation of event-driven inter-
faces, using several communicating objects to model the system, where both the behav-
ior of objects and the communication protocol between objects are described by the
Petri net dialect called Cooperative Objects (CO). In the ICO formalism, an object is
an entity featuring four components: a cooperative object which describes the behavior
of the object, a presentation part (i.e. the graphical interface), and two functions (the
activation function and the rendering function) which make the link between the coop-
erative object and the presentation part.

An ICO specification fully describes the potential interactions that users may have
with the application. The specification encompasses both the "input" aspects of the in-
teraction (i.e. how user actions affects the inner state of the application, and which ac-
tions are enabled at any given time) and its "output" aspects (i.e. when and how the
application displays information relevant to the user).

This formal specification technique has already been applied in the field of Air Traf-
fic Control interactive applications [20], space command and control ground systems
[21], interactive military [5] or civil cockpits [2].

The ICO notation is fully supported by a CASE tool called PetShop [4][22]. All the
models presented in the following of this paper have been edited using it. Beyond, the
presented test generation techniques are part of an effort to support MBT in PetShop.

3.4 Modeling of the Interaction Technique Using ICO

Based on the requirements provided in section 3.1, we can build a model of the inter-
action technique (step 1 of the MBT process) using ICO. Fig. 3 presents this model that
is made of places (oval shapes), transitions (rectangular shapes) and arcs. Two commu-
nication means are proposed by ICO: a unicast and synchronous communication, rep-
resented by method calls, and a multicast asynchronous communication, represented
by event handling:

8

x When an ICO proposes method calls, they are each mapped into a set of three places
representing three communication ports (the service input, output and exception
ports). For instance, on the left part of Fig. 3, the places called SIP_addFinger,
SOP_addFinger and SEP_addFinger are the input, output and exception ports of the
method addFinger. When this method is called (for instance, by the middle right
transition of Fig. 4), a token is created, holding the parameters of the invocation and
is put in place SIP_addFinger. The transitions that invoke such methods have got a
‘I’ on the right part of their header.

x When an ICO is able to handle events, it uses special transitions called event handlers
such as transition updateFingerX in the middle of Fig. 3. Such transitions are de-
scribed using a set of information holding the event source, the event name, extra
event parameters and a condition that concerns the event parameters. In the example
of transition updateFingerX, the event source is fx, a value held by place
FINGERS_MERGED_BY_TWO, the event name is touchevent_up, the event pa-
rameters contain an object called info and there is no condition on the parameter.
These event handlers may handle events from outer sources or from other models.
When the event source is another model, this model contains transitions that raise
events. Events are raised using the keyword raiseEvent in the code part of the tran-
sition and an “E->” is put in the right part of the header of the transition (see transi-
tion merge2Fingers near the middle of Fig. 3).

The model illustrated by Fig. 3 represents the behavior of the “Finger Clustering” In-
teraction Technique described in section 3.2. This behavior may be divided into two
different parts according to their role:

x Managing fingers life cycle: Each finger is added or removed from the interaction
technique model. In between, their coordinates may be updated (i.e. the finger has
moved):
─ Adding finger to the interaction technique is done using the method addFinger,

implemented using the “SIP_addFinger” place, “addFinger” transition and
“SOP_addFinger” place (see Fig. 3). This method is called by a transition of the
Low-Level transducer model (see Fig. 4). This invocation is made each time a
Finger is created to add it to the interaction technique. When the finger enters the
interaction technique, it is placed in the “SINGLE FINGERS” place. This mech-
anism allows for dynamic appearance of fingers in the interaction technique. To
ease the rest of the discussion, we limited the number of fingers instantiated in
the interaction technique to 4 using the place “FINGER_LIMIT”. Removing this
place would remove this restriction.

─ Removing or updating fingers coordinates is performed by handling events that
comes from the Low-Level transducer model (see Fig. 4). When a touchEvent_up
is received, the corresponding finger is removed from the interaction technique
model (this is the case for instance with transition remove1 on the left part of Fig.
3). When a touchEvent_update is received, the corresponding point (associated
with a finger) is updated (this is the case for instance with transition updating1Fin-
ger on the top left part of Fig. 3).

9

Fig. 3. ICO Model for the finger clustering interaction technique.

x Detecting clusters of fingers: Each time a finger is added or removed from the in-
teraction technique model, or each time the coordinates of one finger is updated, the
clustering or de-clustering of fingers is computed:

10

─ For two or three fingers, the principle is the same, supported thanks to the pre-
conditions of the “mergeXFingersX” and “unMergeXFingers” transitions, that
compute the proximity of the fingers.

─ The 5 seconds timeout for de-clustering three fingers is handled thanks to a “timed
transition” (note the [5000] - expressed in ms - line at the bottom of the un-
Merge3Fingers transition) that removes the fingers held by place
FINGERS_MERGED_BY_THREE.

While we are able to describe the interaction technique, the approach can be applied
to other components of the architecture. For instance, Fig. 4 presents the ICO model of
the Low-Level Transducer component of the architecture presented earlier. Note that
the “addFingerToInteraction” transition contains an invocation on the interaction tech-
nique. This invocation is the one associated with the SIP/SOP places in the Interaction
Technique Model. To prevent inconsistent input such as two fingers at the same loca-
tion (which is physically impossible), a test arc allows to check whether a touch down
is associated with a touch point of a finger already on the screen.

Fig. 4. ICO Model for the Low-Level Transducer

4 Generating Test Cases from ICO Specifications

In this section, we focus on steps 2, 3 and 4 of the MBT process (see Fig. 1) applied to
our case study. We first present our test selection criteria and specification and then
present our test generation approach.

4.1 Test Selection Criteria and Test Case Specification

Testing an interaction technique consists in verifying that, for a set of low-level input
events, the corresponding high-level event is produced so that components subscribed
to it (e.g. application dialogs or widgets) are notified with a well-formed event. This
differs from testing the application as done in the work presented in section 2.2. Indeed,
in these, the events considered in the test cases are already high-level ones and the
verification that is made is that the effect on the UI is the correct one. To perform testing
on the interaction techniques requires to i) describe the sequences of actions triggering
the events raised by the interaction techniques and to ii) describe the associated events
to observe on the interaction technique.

Regarding the finger clustering interaction techniques, this means that we want to be
able to identify all the possible sequences of low-level events leading to the raising of
the “twoFingersClustered”, “threeFingersClustered”, “twoFingersDeclustered and

11

“threeFingersDeclustered” events in the interaction technique transitions. For illustra-
tion purpose, we focus on the raising of “threeFingersClustered” event.

4.2 Generating Test Cases for the Interaction Technique

To identify the relevant test cases for the raising of the “threeFingersClustered” event,
we use the reachability graph of the Petri-net. A reachability graph of a Petri-net is a
directed graph G=(V,E), where v∈V represents a class of reachable markings; e∈E rep-
resents a directed arc from a class of markings to the other class of markings [30]. Fig.
5 presents the reachability graph of the interaction technique introduced previously. In
this graph, each state contains four digits symbolizing the number of tokens contained
in the places “FINGER LIMIT”, “SINGLE FINGER”, “FINGERS MERGED BY
TWO” and “FINGERS MERGED BY THREE”. For instance, the state “4,0,0,0” at the
top means that the “FINGER LIMIT” place contains 4 tokens and that the other places
are empty. We take advantage of the APT (Analysis of Petri nets and labelled transition
systems) project2 [6] to generate this graph.

Fig. 5. Reachability graph derived from the ICO model of the interaction technique

As observable in Fig. 5, the reachability graph is actually a Finite State Machine with
no accepting state. Considering that the event we focus on is raised in the “merge3Fin-
gersX” transition, we know that the event must be raised whenever a state of the FSM
having a “merge3Fingers” incoming edge is reached. Marking these states (i.e.
“1,0,0,1” and “0,1,0,1”) as accepting ones allows us to describe the actual grammar of
the test cases for the “threeFingersClustered” event. This grammar3 only misses con-
crete values for fingers coordinates. The following is an example of test case matching
this grammar expressed into Backus-Naur Form (BNF):

<testCase> ::= <addFinger> <touchEventf_update> <addFinger> <addFin-
ger> <touchEventf_update> <merge3Fingers>

2 https://github.com/CvO-Theory/apt
3 For which the regular expression can be obtained from the FSM using tools such as FSM2Regex

(http://ivanzuzak.info/noam/webapps/fsm2regex/)

http://ivanzuzak.info/noam/webapps/fsm2regex/

12

The reachability graph we present in this case study contains values for each place as
we intentionally limited to 4 the number of fingers in the interaction technique. How-
ever, some touch screens support more than 4 fingers and therefore one may want to
use multiple clusters of three fingers. It would be possible to remove this restriction
while still being able to apply our process by performing our analysis on a symbolic
reachability graph. Symbolic reachability graphs use variables instead of concrete val-
ues in the states for the analysis of Petri-nets with such infinite marking, making it
possible to express infinite number of states.

To prepare the instantiation of the test scripts, we must focus on how the required
values are produced, partly supported by the model of the application. This model de-
scribes the conditions under which the transitions are fired. In our case, it describes the
constraints on the distance between the points, defining the values domain. When in-
stantiating the test scripts, the integration of these constraints relies on a semi-auto-
mated support, where the values are checked at editing time. For instance, in the instan-
tiation of the grammar example proposed above, whatever the coordinates of the three
added fingers are, the distance between them must fit the precondition of the transitions
“merge3Fingers1” and “merge3Fingers2”.

5 Test Cases Execution

In this section, we discuss the execution of the test of the interaction technique, i.e.
steps 5.1 and 5.2 of the MBT process. While the advances we propose are mostly related
to test cases generation, we find it important to emphasis the relevance of selecting the
test adapter appropriately and to discuss the possible ways to use our test cases.

5.1 Test Adapter Selection

Testing the interaction technique consist in verifying that for a set of input events the
corresponding high-level event is produced. A key in executing such test properly is
being able to produce an input event that is actually the event expected by the interac-
tion technique as an input, i.e. an event from the low-level transducer. Assuming that
we are testing our interaction technique as part of a JavaFX application, this means
producing JavaFX Touch Events4. However, testing the interaction technique alone
may prove to be insufficient to ensure that the interaction technique will behave
properly for the end-user. Indeed, while evaluating our approach, we encountered a
known issue that no touch events are forwarded to JavaFX by most popular distribu-
tions of Linux using a GTK-based desktop environment5. In other words, the Touch
Provider of these distributions is not producing relevant events for the Low-Level
Transducer that cannot, in turn, produce events for the interaction technique. This
means that the JavaFX finger clustering cannot be used on a Linux platform even
though tests based on JavaFX Touch Event would have indicated that the interaction

4 https://openjfx.io/javadoc/11/javafx.graphics/javafx/scene/input/class-use/TouchEvent.html
5 https://bugs.openjdk.java.net/browse/JDK-8090954

https://bugs.openjdk.java.net/browse/JDK-8090954

13

technique behaves properly. Therefore, when testing touch applications, one may want
to produce Operating System-level events and to perform integration testing of the
Low-Level Transducer/Interaction Technique couple. Such tests can be executed on the
Windows platform by using the Touch Injection technology of the Windows API6 to
produce OS-level touch events as inputs. Regarding Linux, it is worth mentioning that
ARM versions of GTK are not prone to the issue presented earlier.

5.2 Test Execution for the Interaction Technique

The execution of the tests on the SUT is an activity that is highly dependent of the way
the SUT is implemented. Overall, testing the interaction technique alone requires i)
being able to forward the event sequence of the test script to the interaction technique
and ii) being able to subscribe to the events the interaction technique produces. The
easiest way to test the interaction technique of the SUT is to do it using white-box or
grey-box testing. Indeed, in such cases, it is easy to either instrument the class of the
SUT responsible for the interaction technique or to encapsulate it in a test adapter with
which the test execution environment can interact. Then, the test execution environment
can perform the event sequence described by the test script. The role of the oracle is
then to determine whether the test passed based on whether or not it received the ex-
pected event from the interaction technique in a timely manner.

6 Generalizability of the Approach

While this paper focused on the interaction technique component of the architecture
presented in section 3.1, the ICO notation, alongside with its CASE tool Petshop, sup-
port the modelling and the test generation for other components of the architecture as
well as GUI Testing as defined by Banerjee et al. [1]. This section highlights the gen-
eralizability of the modelling philosophy and of the test case generation approach. Due
to space constraint and to the highly SUT-dependent nature of the tests execution, we
will however not develop further on test execution.

6.1 Generalizability of the Modelling Philosophy

In addition to interaction techniques, we pointed out in section 3.4 that ICO can be used
to model the low-level transducer of a post-WIMP application (Fig. 4). Modelling of
Logical Input Devices (e.g. fingers) and their dynamic instantiation is covered in [14].
Moreover, [20] demonstrates that ICO allows the description of the Application (dialog
part) components, including those with dynamic instantiation of widgets, on examples
such as an Air Traffic Control (ATC) plane manager. To validate that our work is com-
patible with GUI Testing of WIMP application, we modelled the application specified
in Memon et al.'s [17] review of advances in MBT for applications with a GUI front-
end. We had no trouble describing the behavior of this WIMP application using ICO in

6 https://docs.microsoft.com/en-us/windows/desktop/api/_input_touchinjection/

14

Petshop. Combining this with the modelling of post-WIMP interaction techniques
demonstrated herein, shows that we are able to model post-WIMP applications.

6.2 Generalizability of the Test Case Generation Approach

Thanks to Memon et al.’s review of advances in MBT [17], we were able to verify that
our test generation approach worked for WIMP applications. Indeed, [17] presented
various models for the application it specifies, including one being a Finite State Ma-
chine. This allowed us to verify that the reachability graph of the Petri-net was the same
(name of states aside) as the FSM in [17]. Beyond that, on applications that involve
dynamicity such as the ATC plane manager dialog, the approach fits well as each air-
craft is added to the dialog model using invocation in the same way as fingers are added
to the interaction technique presented in this paper. Yet, as the number of aircraft on
the radar visualization is virtually infinite, the use of a symbolic reachability graph is
made mandatory, while standard reachability graph can be kept for interaction tech-
niques (as the maximum number of touch points supported by the screen is known).

7 Conclusion and Future Work

Testing interactive applications is known to be a challenging activity, whether we con-
sider WIMP or post-WIMP applications. In this paper, we have shown that while the
testing of WIMP applications retained most of the attention of researchers and practi-
tioners in the field of MBT, post-WIMP applications raise new challenges for the com-
munity. Indeed, properly testing post-WIMP following the standard Model-Based Test-
ing process requires modelling techniques that are expressive enough to describe the
dynamic instantiation of virtual and physical devices, temporal aspects, system config-
uration, etc. Only such models allow the generation of exhaustive enough test cases.

Building on previous work on the Petri-net-based notation ICO (and its associated
CASE tool, PetShop), we showed that we are able to propose a toolchain that addresses
the need for expressive modelling techniques in order to support the generation of test
cases for post-WIMP application following the MBT process. We showed that thanks
to the mechanism supported by ICO we are able to support the high dynamicity of post-
WIMP applications for all the software components of the architecture. This expres-
siveness allows for the generation of abstract test case using a grammar derived from
the reachability graph of Petri-nets.

As we focused on a specific component of the architecture, i.e. the interaction tech-
nique, we found that post-WIMP applications are more sensitive than WIMP applica-
tions to the execution platform, as touch event are not always well forwarded to libraries
by operating-systems, highlighting the need for integration testing. A future extension
to our work would be to implement the generation of integration test cases into PetShop
by relying on the different artifacts allowing the communication between models.

Finally, we are currently investigating using such approach for the testing of inter-
active applications to be deployed in large civil aircraft interactive cockpits. Indeed,
following guidance from supplement DO-333 [26] on formal methods to the DO-178C

15

certification process [25], one may use formal specifications during the development
of such application. If a formal model of the interactive application is built for support-
ing reliability arguments (e.g. “low-level requirements are accurate and consistent
[25]”) we propose to exploit that model to generate test cases from that formal specifi-
cation (as proposed by Gaudel [11]). Such process could result in more cost-effective
test case generation leveraging on available formal models. Beyond, thanks to the ex-
pressive power of ICO, such approach could support the adoption of application offer-
ing richer interaction techniques (e.g. animations [18] or multitouch [12]) even in
safety-critical context (e.g. brace touch [23]).

References

1. Banerjee, I., Nguyen, B., Garousi, V., Memon, A.M.: Graphical user interface (GUI) testing:
Systematic mapping and repository. Information and Software Technology. 55, 1679–1694
(2013).

2. Barboni E., Conversy S., Navarre D. & Palanque P. Model-Based Engineering of Widgets,
User Applications and Servers Compliant with ARINC 661 Specification. 13th conf. on De-
sign Specification and Verification of Interactive Systems (DSVIS 2006), LNCS Springer
Verlag. p25-38

3. Bass, L., Little, R., Pellegrino, R., Reed, S., Seacord, R., Sheppard, S. and Szezur, M.R. The
arch model: Seeheim revisited. In User Interface Developpers' Workshop (1991).

4. Bastide, R., Navarre, D., Palanque, P.: A Model-based Tool for Interactive Prototyping of
Highly Interactive Applications. In: CHI ’02 Extended Abstracts on Human Factors in Com-
puting Systems. pp. 516–517. ACM, New York, NY, USA (2002).

5. Bastide R., Navarre D., Palanque P., Schyn A. & Dragicevic P. A Model-Based Approach
for Real-Time Embedded Multimodal Systems in Military Aircrafts. Sixth International
Conference on Multimodal Interfaces (ICMI'04) October 14-15, 2004, USA, ACM Press.

6. Best, E., Schlachter, U.: Analysis of Petri Nets and Transition Systems. Electron. Proc. The-
or. Comput. Sci. 189, 53–67 (2015).

7. Bowen, J., Reeves, S.: Generating Obligations, Assertions and Tests from UI Models. Proc.
ACM Hum.-Comput. Interact. 1, 5:1–5:18 (2017).

8. Campos, J.C., Fayollas, C., Martinie, C., Navarre, D., Palanque, P., Pinto, M.: Systematic
Automation of Scenario-based Testing of User Interfaces. In: Proceedings of the 8th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems. pp. 138–148. ACM,
New York, NY, USA (2016).

9. Canny, A., Bouzekri, E., Martinie, C., Palanque, P.: Rationalizing the Need of Architecture-
Driven Testing of Interactive Systems. In: Human-Centered and Error-Resilient Systems
Development. Springer, Cham (2018).

10. Cronel, M., Dumas, B., Palanque, P., Canny, A.: MIODMIT: A Generic Architecture for
Dynamic Multimodal Interactive Systems. In: Bogdan, C., Kuusinen, K., Lárusdóttir, M.K.,
Palanque, P., and Winckler, M. (eds.) Human-Centered Software Engineering. pp. 109–129.
Springer International Publishing (2019).

11. Gaudel, M.-C.: Testing can be formal, too. In: TAPSOFT ’95: Theory and Practice of Soft-
ware Development. pp. 82–96. Springer, Berlin, Heidelberg (1995).

12. Hamon, A., Palanque, P., Silva, J.L., Deleris, Y., Barboni, E.: Formal Description of Multi-
touch Interactions. In: Proceedings of the 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. pp. 207–216. ACM, New York, NY, USA (2013).

16

13. Hamon-Keromen, A.: Définition d’un langage et d’une méthode pour la description et la
spécification d’IHM post-W.I.M.P. pour les cockpits interactifs, (2014).

14. Hamon, A., Palanque, P., Cronel, M., André, R., Barboni, E., Navarre, D.: Formal Modelling
of Dynamic Instantiation of Input Devices and Interaction Techniques: Application to Multi-
touch Interactions. In: Proceedings of the 2014 ACM SIGCHI Symposium on Engineering
Interactive Computing Systems. pp. 173–178. ACM, New York, NY, USA (2014).

15. Lelli, V., Blouin, A., Baudry, B., Coulon, F.: On model-based testing advanced GUIs. In:
2015 IEEE Eighth International Conference on Software Testing, Verification and Valida-
tion Workshops (ICSTW). pp. 1–10 (2015).

16. Martinie, C., Navarre, D., Palanque, P., Barboni, E., Canny, A.: TOUCAN: An IDE Sup-
porting the Development of Effective Interactive Java Applications. In: Proceedings of the
ACM SIGCHI Symposium on Engineering Interactive Computing Systems. pp. 4:1–4:7.
ACM, New York, NY, USA (2018).

17. Memon, A.M., Nguyen, B.N.: Advances in Automated Model-Based System Testing of
Software Applications with a GUI Front-End. In: Zelkowitz, M.V. (ed.) Advances in Com-
puters. pp. 121–162. Elsevier (2010).

18. Mirlacher, T., Palanque, P., Bernhaupt, R.: Engineering Animations in User Interfaces. In:
Proceedings of the 4th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems. pp. 111–120. ACM, New York, NY, USA (2012).

19. Morgado, I.C., Paiva, A.C.R.: The iMPAcT Tool for Android Testing. Proc. ACM Hum.-
Comput. Interact. 3, 4:1–4:23 (2019).

20. Navarre, D., Palanque, P., Ladry, J.-F., Barboni, E.: ICOs: A Model-based User Interface
Description Technique Dedicated to Interactive Systems Addressing Usability, Reliability
and Scalability. ACM Trans. Comput.-Hum. Interact. 16, 18:1–18:56 (2009).

21. Palanque P., Bernhaupt R., Navarre D., Ould M. & Winckler M. Supporting Usability Eval-
uation of Multimodal Man-Machine Interfaces for Space Ground Segment Applications Us-
ing Petri net Based Formal Specification. Ninth Int. Conference on Space Operations, Italy,
June 18-22, 2006.

22. Palanque P., Ladry J-F, Navarre D. & Barboni E. High-Fidelity Prototyping of Interactive
Systems can be Formal too 13th Int. Conf. on Human-Computer Interaction (HCI Interna-
tional 2009) LNCS, Springer.

23. Palanque P., Cockburn A., Gutwin C., Deleris Y. & Desert-Legendre L. Brace Touch: A
Dependable, Turbulence-Tolerant, Multi-Touch Interaction Technique for Interactive Cock-
pits. In: International Conference on Computer Safety, Reliability, and Security 2019
(SAFECOMP). Springer, Verlag (2019).

24. Pezzè, M., Rondena, P., Zuddas, D.: Automatic GUI Testing of Desktop Applications: An
Empirical Assessment of the State of the Art. In: Companion Proceedings for the
ISSTA/ECOOP 2018 Workshops. pp. 54–62. ACM, New York, NY, USA (2018).

25. RTCA. DO-178C Software Considerations in Airborne Systems and Equipment Certifica-
tion. 2011.

26. RTCA. DO-333 Formal Methods Supplement to DO-178C and DO-278A. 2011.
27. Shneiderman, B.: Direct Manipulation: A Step Beyond Programming Languages. Computer.

16, 57–69 (1983). https://doi.org/10.1109/MC.1983.1654471.
28. Utting, M., Pretschner, A., Legeard, B.: A taxonomy of model-based testing approaches.

Softw. Test. Verif. Reliab. 22, 297–312 (2012).
29. Van Dam, A.: Post-WIMP user interfaces. Communications of the ACM. 40.2, 63-67

(1997).
30. Ye, X., Zhou, J., Song, X.: On reachability graphs of Petri nets. Computers & Electrical

Engineering. 29, 263–272 (2003). https://doi.org/10.1016/S0045-7906(01)00034-9.

https://doi.org/10.1109/MC.1983.1654471

Modelling Human Reasoning in Practical

Behavioural Contexts using Real-time Maude
?

Antonio Cerone1 and Peter Csaba Ölveczky2

1 Department of Computer Science, Nazarbayev University, Nur-Sultan, Kazakhstan
antonio.cerone@nu.edu.kz

2 Department of Informatics, University of Oslo, Norway
peterol@ifi.uio.no

Abstract. In this paper we present an approach for modelling human
reasoning using rewrite systems and we illustrate our approach in the
context of human behaviour through a car driving example. Reasoning
inference rules and descriptions of human activities are expressed using
the Behavior and Reasoning Description Language (BRDL). The BRDL
model is then translated into Real-time Maude. The object-oriented and
equational logic aspects of Maude are exploited in order to define alter-
native semantic variations of BRDL that implement alternative theories
of memory and cognition.

Keywords: Human Reasoning · Human Behaviour · Formal Methods ·
Rewrite Systems · Real-time Maude.

1 Introduction

One of the main challenges in Human-computer Interaction (HCI) is that the
way humans actually use devices is not always consistent with the use for which
such devices have been designed and built. In fact, although a systematic ex-
ploration of the concept of “plausible” behaviour may provide a good baseline
for understanding the interaction [3, 9], some forms of “plausible” behaviour
emerge only in specific contexts and cannot be predicted a priori. Cognitive ar-
chitectures [10], formal methods [17, 18] and several other approaches, including
machine learning and control theory [17], have been used to tackle this problem.

However, cognitive architectures tend to be specialised, each with a specific
scope, which is normally academic and seldom practical [10], formal methods
are “regarded as requiring too much expertise and e↵ort for day-to-day use,
being principally applied in safety-critical areas outside academia” [17, Ch. 7,
page 187], and machine learning and control theory focus on the interaction
process rather than human behaviour. Moreover, although emulating reasoning
is one of the main objectives of some cognitive architectures, past and current
e↵orts in this sense either do not consider human errors or are detached from
? Work partly funded by Seed Funding Grant, Project SFG 1447 “Formal Analysis
and Verification of Accidents”, University of Geneve, Switzerland.

2 A. Cerone and P. Csaba Ölveczky

the practical context of human behaviour [10]. Furthermore, high-level reasoning
is not supported by control theory and, although it may emerge using machine
learning, the way it emerges cannot be explained.

Our approach builds on the Behaviour and Reasoning Description Language

(BRDL) [8] and on the use of the Maude rewrite system [14–16] to model the dy-
namics of human memory and memory processes [6, 7]. The semantics of BRDL
is based on a basic model of human memory and memory processes and is adapt-
able to di↵erent cognitive theories. This allows us, on the one hand, to keep the
syntax of the language to a minimum, thus making it easy to learn and under-
stand without requiring expertise in mathematics or formal methods and, on the
other hand, to use alternative semantic variations to compare alternative theo-
ries of memory and cognition. BRDL, is equipped with the linguistic constructs
to specify reasoning goals, inference rules and unsolved problems. We use rewrite
systems [12, 15] to implement such constructs. Specifically, BRDL is translated
into Real-time Maude [14, 16], thus combining human components with the sys-
tem components that model the environment in which humans operate.

The rest of the paper is structured as follows. Sections 2 and 3 present
overviews of Real-time Maude and BRDL, respectively. Section 4 presents the
Real-time Maude implementation of the model of human memory and memory
processes that provide the dynamics of BRDL constructs. Section 5 illustrates
the rewrite rules to emulate human reasoning and the environment in which
humans operate. Finally, Section 6 concludes the paper.

2 Real-Time Maude

Real-Time Maude [14, 16] is a formal modeling language and high-performance
simulation and model checking tool for distributed real-time systems. It is based
on Full Maude, the object-oriented extension of Core Maude, which is the basic
version of Maude.

An algebraic equational specification (specifying sorts, subsorts, functions
and equations defining the functions) defines the data types in a functional
programming style. Labeled rewrite rules crl [l]: t => t

0 if cond define lo-
cal transitions from state t to state t

0, and tick rewrite rules crl [l]: {t} =>
{t0} in time � if cond advance time in the entire state t by � time units.

We briefly summarize the syntax of Real-Time Maude and refer to Ölveczky’s
work [14–16] for more details. Maude equational logic supports declaration of
sorts, with keyword sort for one sort, or sorts for many. A sort A may be spec-
ified as a subsort of a sort B by subsort A < B. Operators are introduced with
the op and ops keywords: op f : s1 . . . sn -> s. They can have user-definable
syntax, with underbars ‘_’ marking the argument positions. Some operators can
have equational attributes, such as assoc, comm, and id, stating that the opera-
tor is associative, commutative and has a certain identity element, respectively.
Such attributes are used by the Maude engine to match terms modulo the de-
clared axioms. An operator can also be declared to be a constructor (ctor) that
defines the carrier of a sort. Equations and rewrite rules are introduced with,

Modelling Human Reasoning using Real-time Maude 3

respectively, keywords eq, or ceq for conditional equations, and rl, or crl for
conditional rules. The mathematical variables in such statements are declared
with the keywords var and vars, or can be introduced on the fly in a statement
without being declared previously, in which case they have the form var:sort.
An equation f(t1, . . . , tn) = t with the owise (for “otherwise”) attribute can
be applied to a subterm f(. . .) only if no other equation with left-hand side
f(u1, . . . , un) can be applied.

A declaration class C | att1 : s1, . . . , attn : sn declares a class C with
attributes att1 to attn of sorts s1 to sn. An object of class C is represented as
a term < O : C | att1 : val1, ..., attn : valn > of sort Object, where O, of sort
Oid, is the object’s identifier, and where val1 to valn are the current values of
the attributes att1 to attn. The state is a term of sort Configuration, and is
a multiset of objects and messages. Multiset union is denoted by an associative
and commutative juxtaposition operator, so that rewriting is multiset rewriting.

Real-Time Maude specifications are executable, and the tool provides a va-
riety of formal analysis methods. The timed rewriting command (tfrew t in
time <= timeLimit .) simulates one of the system behaviors by rewriting the
initial state t up to duration timeLimit .

3 Behavior and Reasoning Description Language (BRDL)

The Behavior and Reasoning Description Language (BRDL) [8] originates from
and extends the Human Behaviour Description Language (HBDL) introduced
in previous work [6, 7]. HBDL aims at the modelling of automatic and deliberate
human behaviour while interacting with an environment consisting of heteroge-
nous physical components. It requires reasoning and problem solving aspects to
be modelled explicitly in a procedural way, whereby the reasoning process and
the problem solution are explicitly described with the language. BRDL, instead,
is equipped with the linguistic constructs to specify reasoning goals, inference
rules and unsolved problems. It is then the cognitive engine that implements the
language to emulate the reasoning and problem solving processes.

BRDL is based on Atkinson and Shi↵rin’s multistore model of human mem-
ory [1]. This model is characterised by three stores between which various forms
of information flow: short-term memory (STM), which has a limited capacity
and where the information that is needed for processing activities is temporar-
ily stored with rapid access and rapid decay, and long-term memory (LTM),
which has a virtually unlimited capacity and where information is organised in
structured ways, with slow access but little or no decay. A usual practice to
keep information in memory is rehearsal. In particular, maintenance rehearsal

allows us to extend the time during which information is kept in STM, whereas
elaborative rehearsal allows us to transfer information from STM to LTM [2].
We consider a further decomposition of LTM: semantic memory, which refers
to our knowledge of the world and consists of the facts that can be consciously

recalled, and procedural memory, which refers to our skills and consists of rules

4 A. Cerone and P. Csaba Ölveczky

and procedures that we unconsciously use to carry out tasks, particularly at the
motor level.

BRDL has a concise, appealing syntax, which is presented elsewhere [8]. In
order to show how BRDL is translated to Maude, in this section we introduce
an ASCII, verbose version of the syntax, as it is implemented in Maude. Both
HDBL and BRDL describe human behaviour through the manipulation of three
kinds of entities:

perceptions are sensed in the environment and enter human input channels;
actions are performed by the human on the environment;
cognitive information consists in the items we store in our STM, including

information retrieved from the LTM, goals, recent perceptions or planned
actions.

3.1 BRDL Entities and Cognitive Control

Pieces of cognitive information are also components of the associations in se-
mantic memory and the procedures in procedural memory. Such entities are
modelled with Maude using the following sort structure.

sorts Perception Action Cognition BasicItem Item Goal .
subsorts Cognition Perception Action < BasicItem < Item .
subsort Goal < Item .

where Perception, Action and Cognition model perceptions, actions and cog-
nitive information, respectively. Sort Item models anything that can be stored
in STM and sort BasicItem is its subsort that excludes goals (from sort Goal).
All these entities may also be elements of sets that define further sorts as follow.

subsorts Perception < PerceptionSet < BasicItemSet .
subsorts Cognition < CognitionSet < BasicItemSet .
subsorts Action < ActionSet < BasicItemSet .
subsort BasicItem < BasicItemSet .
subsorts EmptyItemSet < PerceptionSet CognitionSet ActionSet

< BasicItemSet < ItemSet .
subsort Item < ItemSet .
op none : -> EmptyItemSet [ctor] .
op _;_ : BasicItemSet BasicItemSet ->

BasicItemSet [ctor assoc comm id: none] .
op _;_ : PerceptionSet PerceptionSet ->

PerceptionSet [ctor assoc comm id: none] .
op _;_ : ActionSet ActionSet ->

ActionSet [ctor assoc comm id: none] .
op _;_ : ItemSet ItemSet -> ItemSet [ctor ditto] .

We use semicolon “;” as the general operator to add elements or subsets to a
set, starting from an empty set (none in this case).

We extend Perception to DefPerception and Action to DefAction by in-
cluding as default values noPerception and noAction to model the absence of
perception and action, respectively.

Modelling Human Reasoning using Real-time Maude 5

sorts DefPerception DefAction .
subsort Perception < DefPerception . subsort Action < DefAction .
op noAction : -> DefAction [ctor] .
op noPerception : -> DefPerception [ctor] .

Only relevant perceptions are transferred, possibly after some kind of processing,
to the STM using attention, a selective processing activity that aims to focus
on one aspect of the environment while ignoring others. Explicit attention is
associated with our goal in performing a task. It focusses on goal-relevant stimuli
in the environment. Implicit attention is grabbed by sudden stimuli that are
associated with the current mental state or carry emotional significance. Inspired
by Norman and Shallice [13], we consider two levels of cognitive control:

automatic control
fast processing activity that requires only implicit attention and is carried
out outside awareness with no conscious e↵ort implicitly, using rules and
procedures stored in the procedural memory;

deliberate control
processing activity triggered and focussed by explicit attention and carried
out under the intentional control of the individual, who makes explicit use
of facts and experiences stored in the declarative memory and is aware and
conscious of the e↵ort required in doing so.

In order to model automatic and deliberate control as well as reasoning, we
introduce the following sorts and operations.

sorts Automatism KnowledgeDomain .
op automatism : KnowledgeDomain -> Automatism [ctor] .
op goal : KnowledgeDomain BasicItemSet -> Goal [ctor] .
op infer : KnowledgeDomain -> Inference [ctor] .

We define automatic behaviour in terms of a specific knowledge domain (sort
KnowledgeDomain and operation automatism). Automatic behaviour is driven
by the knowledge domain, which gives a focus to implicit attention.

Deliberate behaviour is driven by a goal, which not only depends on the
knowledge domain but also on a representation of the goal achievement. This
representation may be given by a combination of perceptions, actions and cogni-
tive information. For example when we are interacting with an ATM (Automatic
Teller Machine) with the goal of withdrawing cash, we achieve the goal when we
perform the action of collecting the cash.

Inference is driven by the knowledge domain on which we are reasoning.

3.2 Basic Activities

Human behaviour is modelled in BRDL (and HTDL) as a set of basic activities,
defined through the following sorts and operations

sorts AutomaticActivity DeliberateActivity Knowledge .
op _:_>|_-->_|>_duration_ : Automatism BasicItemSet DefPerception

6 A. Cerone and P. Csaba Ölveczky

DefAction ItemSet Time -> AutomaticActivity . [ctor]
op _:_>|_-->_|>_duration_ :Goal BasicItemSet DefPerception

DefAction ItemSet Time -> DeliberateActivity [ctor] .
op _:_>|-->|>_duration_ : Inference BasicItemSet

ItemSet Time -> Knowledge [ctor] .

An automatic basic activity within a given knowledge domain domain is
modelled in BRDL and HTDL as

automatism(domain) : info1 >| perception --> action |> info2 duration d

where info1 is the triggering cognitive information in STM, perception is the
triggering perception, action is the performed action, info2 is a new cognitive
information stored in the STM, and d is the duration of the mental processing.
Symbol “>|” denotes that info1 is removed from the STM and “|>” denotes
that info2 is stored in the STM. Using derived operations (i.e. not defined as
constructors but through equations) we have the following syntactic sugar

automatism(domain) : info1 | perception -->
action |> info2 duration d

where info1 acts as a trigger but is not is removed from STM, and

automatism(domain) : info | info1 >| perception -->
action|> info2 duration d

where the union info;info1 acts as a trigger but only info1 is removed from
STM.

A deliberate basic activity within a given knowledge domain domain is mod-
elled in BRDL and HTDL as

goal(domain, info) : info1 >| perception --> action |> info2 duration d

where info is the information denoting the achievement of the goal.
An inference within a given knowledge domain domain is modelled in BRDL

as

inference(domain) : info1 >|-->|> info2 duration d

where info1 is the premise and info2 is the consequence.
Syntactic sugar for deliberate basic activities and inferences is defined simi-

larly to automatic basic activities.
Procedural memory is modeled as sort ProcMem, which is a set of automatic

basic activities

sort ProcMem . subsort AutomaticActivity < ProcMem .
op emptyPM : -> ProcMemory [ctor] .
op _;_ : ProcMemory ProcMemory -> ProcMemory

[ctor assoc comm id: emptyPM] .

Semantic memory is modeled by two sort, sort ActivMem, which is a set of
deliberate basic activities,

Modelling Human Reasoning using Real-time Maude 7

sort ActivMem . subsort DeliberateActivity < ActivMem .
op emptyAM : -> ActivMem [ctor] .
op _;_ : ActivMem ActivMem -> ActivMem [ctor assoc comm id: emptyASM] .

and sort InferMem , which is a set of inferences,

sort InferMem . subsort Knowledge < InferMem .
op emptyIM : -> InferMem [ctor] .
op _;_ : InferMem InferMem -> InferMem [ctor assoc comm id: emptyIM] .

3.3 ‘Zebra Crossing’ Example

As an example to illustrate these forms of human behaviour and reasoning, let
us consider car driving. The knowledge domain is given by constant operation

op driving : -> KnowledgeDomain [ctor] .

Automatic control is essential in properly driving a car and, in such a context, it
develops throughout a learning process based on deliberate control. During the
learning process the driver has to make a conscious e↵ort that requires explicit
attention. For example, the learner has to explicitly pay attention to the other
cars, the pedestrian walking on the footpath, who may be ready to walk across
the road, the presence of zebra crossings, tra�c lights, road signals, etc. These are
goals that drive explicit attention. Moreover, the information gathered through
this process has to be deliberately used to achieve goals (deliberate control),
which continuously emerge while driving as a learner.

For instance, let us define perceptions, actions and cognitive information of
a driver dealing with a zebra crossing as follows

ops static moving ped zebra : Oid -> Perception [ctor] .
ops stop go : Action [ctor] .
ops givenWayPed waitForPed leftZebraCrossing : -> Cognition [ctor] .

The role of such constructors will be explained later in this section.
A learner’s perception of an approaching zebra crossing, normally by seeing

a road signal, either a horizontal or vertical one, triggers the storage of the
cognitive representation of this perception in STM. We may model this instance
of explicit attention as follows.

goal(driving,zebra) : none | zebra --> noAction |> zebra duration d1

where zebra denotes the perception of the zebra crossing and occurs three times
to model, from left to right, the achievement of the goal of explicitly perceiving
the presence of the zebra crossing, the actual perception and the representation
of the perception in STM, respectively. There is no resultant action since here
we are modelling attention.

Once also pedestrians ready to cross are perceived as follows

goal(driving,ped) : none | ped --> noAction |> ped duration d2

8 A. Cerone and P. Csaba Ölveczky

if the car is moving, and obviously the driver is (cognitively) aware of it (modelled
by moving in the STM), and also the cognitive representations of perceptions
zebra and ped are in STM, this composite mental state triggers the retrieval
of the following inference, which models the road code rule concerning zebra
crossings

inference(driving) :
moving ; zebra ; ped |-->|> goal(driving,givenWayPed) duration d3

Retrieving the rule results in adding goal goal(driving,givenWayPed) to the
STM without removing moving, zebra and ped. Such a goal dictates the pre-
scribed behaviour of giving way to pedestrians (whose achivement is denoted by
givenWaypPed). Such a behaviour is ‘implemented’ by the human as modelled
by the following deliberate basic activity

goal(driving,givenWayPed) :
none | none --> stop |> waitForFree duration d4

where stop is the action of stopping the car and waitForFree denotes the
driver’s mental state of waiting for the zebra crossing to be free.

Once automaticity in driving is acquired, the driver is no longer aware of
low-level details and resorts to implicit attention to perform them (automatic
control). In general, also an expert driver always starts driving with a precise
goal in mind, which normally is that of reaching a specific destination, possibly
as a subgoal of the reason for reaching it. Although such a goal is kept in the
driver’s STM, most driving activities are carried out under automatic control,
with no need to retrieve the learned rules. Therefore, the behaviour of an expert
driver is modelled as follows

automatism(driving) : none | zebra --> noAction |> zebra duration d1
automatism(driving) : none | ped --> noAction |> ped duration d2
automatism(driving) :

moving ; zebra |> ped --> stop |> ped ; waitForFree duration d3
automatism(driving) :

moving ; ped |> zebra --> stop |> zebra ; waitForFree duration d3

The first two automatic activities model implicit attention, which results in the
storage of the perception of zebra crossing and pedestrians, respectively. The
last two automatic activities model the automatic reaction to the perception of
pedestrian in combination with the awareness of the presence of a zebra crossing
or the perception of zebra crossing in combination with the awareness of the
presence of pedestrian, depending on which perception occurs first.

We can note that automatic behaviour is more e�cient than deliberate be-
hviour for the following reasons:

– there are no goals in STM to drive explicit attention (low cognitive load);
– there is an immediate reaction to perceptions, when in the appropriate men-

tal state (faster reaction);
– there is no recourse to inference (decreased access to LTM).

Modelling Human Reasoning using Real-time Maude 9

4 Dynamics of BRDL Models

We model the structure of the human memory using the following Real-time
Maude class.

class Human | cognitiveLoad : Nat,
shortTermMemory : TimedItemSet,
inferSemMem : InferMem,
activSemMem : ActivMem,
procMem : ProcMem .

The STM is modelled by attribute shortTermMemory with cognitiveLoad being
its current load, the semantic memory by the two attributes inferSemMem and
activSemMem and the procedural memory by the single attribute procMem .

4.1 STM Model with Real-time Maude

The limited capacity of STM requires the presence of a mechanism to empty it
when the stored information is no longer needed. In fact, information in STM
decay very quickly, normally in less than one minute, unless it is reinforced
through maintenance rehearsal. To implement STM decay, we need to associate
a time to the elements of sort Item

sorts TimedItem TimedItemSet .
subsort TimedItem < TimedItemSet .
op _decay_ : Item Time -> TimedItem [ctor] .
op emptyTIS : -> TimedItemSet [ctor] .
op _;_ : TimedItemSet TimedItemSet -> TimedItemSet

[ctor assoc comm id: emptyTIS] .
op maxDecayTime : -> Time .
eq maxDecayTime = 20000 .

Therefore STM is modelled as an element of sort TimedItemSet, set of elements
of sort TimedItem. A piece of information in STM is associated with a decay time,
which is initialised to the maximum decay time (maxDecayTime, for example
set to 20 000 msec.) when the information is stored in STM. Then decay time
decreases along with the passage of time. A piece of information disappears from
the STM once its decay time has decreased to 0.

Additionally, every time a goal is achieved, there may be a subconscious
removal of information from STM, a process called closure: the information
used to complete the task is likely to be removed from the STM, since it is
no longer needed. Therefore, when closure occurs, a piece of information may
disappear from the STM even before its decay time has decrease to 0. Conversely,
maintenance rehearsal reset the decay time to the value of the maximum decay
time.

In order for a goal with BIS as parameter of sort BasicItemSet to be achieved

– the entire cognitive information included in BIS has to be in STM;
– one of the perceptions (if any) has to be the trigger of the occurring basic

activity (which may be automatic or deliberate);

10 A. Cerone and P. Csaba Ölveczky

– one of the actions (if any) has to be performed by the occurring basic activity.

This is implemented by operations

op removeTime : TimedItemSet -> ItemSet .
op goalAchieved : Goal ItemSet DefPerception DefAction -> Bool .

where operation removeTime removes the time from the elements of the STM
and operation goalAchieved returns true if the goal is achieved.

It is not fully understood how closure works. We can definitely say that once
the goal is achieved, it is removed from the STM. However, it is not clear what
happens to the information that was stored in STM in order to achieve the
goal. We said at the end of Section 3.1 that if an ATM is used with the goal of
withdrawing cash, the goal is achieved when the user collects the cash delivered
by the ATM [6]. However, old ATM interfaces (some still in activity) deliver the
cash before returning the card to the user. There is then the possibility that the
user collects the cash and, feeling the goal achieved, abandons the interaction
forgetting to collect the card. This cognitive error is known as post-completion

error [4, 5, 11]. It could be explained by the loss of the information that was
stored in STM when the user inserted the card in the ATM, as a reminder to
collect the card at a later stage. In fact, such a loss of information is the result of
the closure due to the achievement of the goal when the user collects the cash.

In practice, however, a user interacting with an old ATM interface does not
always forget the card. This may be explained by assuming that the likelihood
to forget the card depends on the user’s cognitive load. Therefore we define the
following thresholds

op closureThresholdLow : -> Nat . eq closureThresholdLow = 4 .
op closureThresholdHigh : -> Nat . eq closureThresholdHigh = 6 .

and force closure to occurs if the cognitive load is at least closureThresholdHigh
and prevent its occurrence if the cognitive load is less than closureThresholdLow.
In all other cases closure may occur non-deterministically.

Finally, a piece of information may also non-deterministically disappear from
the STM when the STM has reached its maximum capacity and it is needed to
make space for the storage of new information. This is implemented by the
following rewrite rule

crl [forgetSomethingIfSTMfull] :
< H : Human | shortTermMemory : (ITEM decay NZT) ; STM,

cognitiveLoad : CL >
=>

< H : Human | shortTermMemory : STM,
cognitiveLoad : sd(CL, 1) >

if CL > stmCapacity .

where sd is the symmetric di↵erence between natural numbers.

Modelling Human Reasoning using Real-time Maude 11

4.2 Model of the Environment

A specific environment with which the human interacts is defined as an object
of class

class Environment | state : TimedEnvState,
transitions : EnvTransitions .

The state attribute characterises the environment and its time aspects by means
of the following sort structure

sort EnvState .
sorts TimedEnvState ExpiringEnvState TimedEnvStateSet .
subsort EnvState < ExpiringEnvState < TimedEnvState < TimedEnvStateSet .
op _expiring‘in_ : EnvState Time -> ExpiringEnvState [ctor] .
op _expired : EnvState -> ExpiringEnvState [ctor] .
op _in‘time_ : ExpiringEnvState Time -> TimedEnvState [ctor right id: 0]
var STATE : EnvState .
eq STATE expiring in 0 = STATE expired .
op noEnvState : -> TimedEnvStateSet [ctor] .
op _;_ : TimedEnvStateSet TimedEnvStateSet -> TimedEnvStateSet

[ctor assoc comm id: noEnvState] .

where

– sort EnvState of environmental states is user-defined and application-specific;
– sort ExpiringEnvState add a life time to the environmental state;
– sort TimedEnvState add a delay time to the (possibly expiring) environmen-

tal state.

Note that 0 is right identity in the construction of timed environmental states
out of expiring environmental states. Thus a timed environmental state with
delay 0 is actually an expiring environmental state (with no delay). Moreover,
expiring environmental states are characterised by a postfix constructor expired
in order to determine di↵erent transitions with respect to the non-expired states.

Sort EnvTransitions models environmental transitions as follows.

sort EnvTransitions .
sort EnvTransition .
subsort EnvTransition < EnvTransitions .
op noTrans : -> EnvTransitions [ctor] .
op _-->_ : ExpiringEnvState TimedEnvState -> EnvTransition [ctor] .
op _--_-->_ : EnvState Action TimedEnvState -> EnvTransition [ctor] .
op _;_ : EnvTransitions EnvTransitions -> EnvTransitions

[ctor assoc comm id: noTrans] .

Obviously interactions (-- -->) are associated with actions, internal actions
(-->) are not.

Sort EnvTransitions is populated through user-defined, application-specific
operation

op transitions : Cid Oid -> EnvTransitions .

12 A. Cerone and P. Csaba Ölveczky

where Cid is a class identifier and Oid is an object identifier.
States of the environment may be observable by humans. Such observability

is modelled as

op observability : ExpiringEnvState -> PerceptionSet .
eq observability(STATE expired) = none .
eq observability(STATE expiring in NZT) = observability(STATE) .

with the rest of operation observability user-defined and application-specific.

4.3 ‘Zebra Crossing’ Environment

In order to define the behaviour of the environment for the example in Sec-
tion 3.3, we need two environments, one to model the car behaviour and one to
model the zebra crossing behaviour. Both car and zebra crossing have a location,
which is variable for the car and fixed for the zebra crossing. They also need to
have additional state components to characterise whether the car is moving or
is static and whether the zebra crossing has pedestrians or is free.

Environment and Observability If we assume to have only one human, one
car and one zebra crossing

ops driver1 car1 zebra1 : -> Oid [ctor] .

then the environmental state is defined as follows.

sorts Location AdditionalState .
ops atInit atZebra atFinal : -> Location [ctor] .
ops hasPed isFree isMoving isBraking isStatic : -> AdditionalState [ctor] .
op state : Location AdditionalState -> EnvState [ctor] .

The meanings of the operations that define locations and additional state compo-
nents are obvious. An environmental state consists of a location and an additional
state.

The observability operation is defined as follows

eq observability(state(LOC,isStatic)) = static .
eq observability(state(LOC,isMoving)) = moving .
eq observability(state(zebra1,AS)) = zebra .
eq observability(state(zebra1,isFree)) = zebra ; noPed .
eq observability(state(zebra1,hasPed)) = zebra1 ; ped .

Transition System The environmental transition systems are defined as

class Car . subclass Car < Environment .
var C : Oid .
eq transitions(Car, C) =

(state(atInit,isMoving) --> state(atZebra, isMoving)
expiring in 1 in time 30000) ;

(state(atZebra,isMoving) -- stop(C) --> state(atZebra, isBraking)) ;

Modelling Human Reasoning using Real-time Maude 13

(state(atZebra,isBraking) --> state(atZebra, isStatic) in time 2000) ;
(state(atZebra,isStatic) -- go(C) --> state(atZebra, isMoving)) ;
(state(atZebra,isMoving) --> state(atFinal, isMoving)

expiring in 1 in time 30000) ;
(state(atFinal,isMoving) -- stop(C) --> state(atFinal, isBraking)) ;
(state(atFinal,isBraking) --> state(atFinal, isStatic in time 2000) .

for the car, and

class Zebra . subclass Zebra < Environment .
var Z : Oid .
eq transitions(Zebra, Z) =

(state(Z,isFree) --> state(Z, hasPed) expiring in 5000) ;
(state(Z,hasPed) --> state(Z, isFree) expiring in 20000) .

for the zebra crossing.
The timings mean that the car takes time 30000 to move between two

consecutive locations and time 2000 to brake, being in an unstable state un-
til these times are elapsed and, once stable, expiring immediately (in time 1)
if not taken, and that there are pedestrian crossing every 25000 time units
(25000 = 20000 + 5000) who take time 5000 to cross.

Initial Configuration Let us consider a driver who has already acquired a
general automatism in driving, in which implicit attention controls the storage
of information in STM, but still needs to perform inferences to apply road code
rules. The initial configuration of the overall system is

op init : -> Configuration .
eq init = < cerone : Human |

cognitiveLoad : 2,
shortTermMemory : emptyTIS,
proceduralMemory :

(automatism(driving) : none | moving --> noAction |> moving duration 1) ;
(automatism(driving) : none | static --> noAction |> static duration 1) ;
(automatism(driving) : none | zebra --> noAction |> zebra duration 1) ;
(automatism(driving) : none | ped --> noAction |> hasPed duration 1) ;
(automatism(driving) : none | freePed --> noAction |> freePed duration 1),

knowledge :
(infer(driving) : (moving ; zebra ; hasPed) |-->|>

goal(driving,givenWayPed) duration 10) ;
(infer(driving) : (static ; zebra ; freePed) |-->|>

goal(driving,leftZebraCrossing) duration 10),
activity :

(goal(driving,givenWayPed) :
(moving ; zebra ; hasPed) | noPerception -->

stop(car1) |> waitForPed) duration 10) ;
(goal(driving,leftZebraCrossing) :

(zebra ; waitForPed) > (static ; freePed) | noPerception -->
go(car1) |> none duration 10)

>

14 A. Cerone and P. Csaba Ölveczky

< zebra1 : Zebra | transitions : transitions(Zebra, zebra1),
state : state(zebra1,zebraPed) expiring in 5000

>
< car1 : Car | transitions : transitions(Car, car1),

state : state(initLoc,moving)
> .

5 Rewrite Rules

At the end of Section 4.1 we have introduced the forgetSomethingIfSTMfull
rewrite rule. In this section we illustrate three more rewrite rules: internal,
reasoning and timePassing. Other rewrite rules not presented here involve
the automatic and deliberated activities, including special cases such as implicit
and explicit attention, when the action is absent, and cognition, when both
perception and action are absent, which are duplicated for the closure and non-
closure cases.

5.1 Internal Action Rewrite Rule

Internal actions are modelled by the following rewrite rule.

crl [internal] :
{< E : Environment | >
REST}

=>
{< E : Environment | state : TESTATE >
REST}

if ALL-TESTATES := fireTransitions(< E : Environment | >)
/\ TESTATE ; OTHER-TESTATES := ALL-TESTATES .

The rule makes use of the fireTransitions operation, which is defined as fol-
lows

op fireTransitions : Configuration -> TimedEnvStateSet .
eq fireTransitions(< E : Environment |

state : ESTATE,
transitions : (ESTATE --> TESTATE) ; TRANSES > REST) =

TESTATE ; fireTransitions(< E : Environment |
state : ESTATE,
transitions : TRANSES > REST) .

eq fireTransitions(REST) = noEnvState [owise] .

and returns the set of the environmental states generated by the firing of the
enabled internal transitions. In the internal rewrite rule, such a set is assigned
to variable ALL-TESTATES, which is matched to TESTATE ; OTHER-TESTATES,
thus giving the rewritten state TESTATE.

Modelling Human Reasoning using Real-time Maude 15

5.2 Reasoning Rewrite Rule

Reasoning is modelled by the following rewrite rule.

crl [reasoning] :
{< H : Human |

cognitiveLoad : CL,
shortTermMemory : (TIS1 ; TIS2),
inferMem : (infer(KD) : BIS >| -->|> IS duration T) ; KNOW >

REST}
=>

{< H : Human |
cognitiveLoad : card(NEW-STM),
shortTermMemory : NEW-STM,
inferMem : (infer(KD) : BIS >| -->|> IS duration T) ; KNOW >

idle(REST, T)}
in time T
if BIS == removeTime(TIS1)
/\ CL < closureThresholdHigh /\ CL <= stmCapacity
/\ NEW-STM := addTime(BIS ; IS, maxDecayTime)) ; idle(TIS2,T) .

In addition to operation removeTime introduced in Section 4.1, the rule makes
use of

– the addTime operation, which transforms the untimed sets BIS and IS into
a timed set to be added to the STM;

– the idle operation, which models the passage of a given time by decrement-
ing each element of sort TimedItemSet of the STM and, for each environment
component, the delay and expiration times of the state attribute, which is
of sort TimedEnvState, if positive.

Note that also the decay time of the premises in BIS is set to the maximum
decay time because the use of BIS in the inference is an implicit maintenance
rehearsal of its timed version TIS1.

Let us consider the zebra crossing example introduced in Sections 3.3 and 4.3.
When moving, zebra and ped are stored in the STM, the road code rule con-
cerning zebra crossing (from Section 4.3)

inference(driving) :
moving ; zebra ; ped |-->|> goal(driving,givenWayPed) duration d3

which enables the application of Maude reasoning conditional rule with

BIS = moving ; zebra ; ped and IS = goal(driving,givenWayPed)

Thus the new goal goal(driving,givenWayPed) is added to the STM and trig-
gers the following deliberate basic activity, stored in LTM, which implement the
road code rule (from Section 4.3)

goal(driving,givenWayPed) :
none | none --> stop |> waitForFree duration d4

which dictates the action of stopping the car (stop) and the storage of waitForFree
in the STM.

16 A. Cerone and P. Csaba Ölveczky

5.3 Time Passing Rewrite Rule

crl [timePassing] :
{CONFIG}

=>
{idle(CONFIG,1)}
in time 1

if nothingEnabled(CONFIG) .

where operation nothingEnabled is defined as

op nothingEnabled enablingSTM : Configuration -> Bool .
eq nothingEnabled(CONFIG) = (fireTransitions(CONFIG) == noEnvState)

and (enablingSTM(CONFIG)) == false .

and operation enablingSTM checks whether the configuration has an object of
class Human whose STM either exceeds the maximum cognitive load or is enabling
an inference rule, an automatic basic activity or a deliberate basic activity. In
this way the timePassing rewrite rule may be applied only if no other rewrite
rule can be applied.

6 Conclusion and Future Work

We have presented a translation of BRDL into Real-time Maude. In previous
work [6, 7], a subset of BRDL, the Human Behaviour Description Language

(HBDL), was implemented using Core Maude. However, that untimed imple-
mentation was limited to automatic and deliberate behaviour powered by a very
simple, fixed short-term memory model, with a minimalist inflexible approach
to closure and without decay. Reasoning and problem solving aspects had to be
modelled explicitly in a procedural way in a limited, unstructured environment
consisting of just one component.

BRDL, instead, is equipped with the linguistic constructs to specify reasoning
goals, inference rules and unsolved problems. The Real-time Maude implemen-
tation of BRDL presented in this paper provides an engine capable to emulate
the human reasoning specified by such constructs. Moreover, the object-oriented
and real-time aspects of Maude allow us to overcome the limitation of previ-
ous work [6] and carry out the implementation of the time aspects envisaged in
recent work [7].

As future work we plan to implement BRDL problem solving constructs
[8] and use the model checking capabilities of Real-time Maude to extend the
untimed analysis approach used in previous work [6] to the formal verification
of timed properties.

References

1. Atkinson, R.C., Shi↵rin, R.M.: Human memory: A proposed system and its con-
trol processes. In: Spense, K.W. (ed.) The psichology of learning and motivation:
Advances in research and theory II, pp. 89–195. Academic Press (1968)

Modelling Human Reasoning using Real-time Maude 17

2. Atkinson, R.C., Shi↵rin, R.M.: The control of short-term memory. Scientific Amer-
ican 225(2), 82–90 (1971)

3. Butterworth, R., Blandford, A.E., Duke, D.: Demonstrating the cognitive plaus-
ability of interactive systems. Form. Asp. of Comput. 12, 237–259 (2000)

4. Byrne, M.D., Bovair, S.: A working memory model of a common procedural error.
Cognitive Science 21, 31–61 (1997)

5. Byrne, M.D., Davis, E.M.: Task structure and postcompletion error in the execu-
tion of a routine procedure. Human Factors 48, 627–638 (2006)

6. Cerone, A.: A cognitive framework based on rewriting logic for the analysis of
interactive systems. In: Software Engineering and Formal Methods (SEFM 2016),
pp. 287–303. No. 9763 in Lecture Notes in Computer Science, Springer (2016)

7. Cerone, A.: Towards a cognitive architecture for the formal analysis of human
behaviour and learning. In: STAF collocated Workshops 2018 (FMIS), pp. 216–
232. No. 11176 in Lecture Notes in Computer Science, Springer (2018)

8. Cerone, A.: Behaviour and reasoning description language (BRDL). In: SEFM
2019 Collocated Workshops. In press. Lecture Notes in Computer Science, Springer
(2019)

9. Harrison, M.D., Campos, J.C., Rukšėnas, R., Curzon, P.: Modelling information
resources and their salience in medical device design. In: EICS 2016, pp. 194–203.
ACM (2026)

10. Kotseruba, I., Tsotsos, J.K.: 40 years of cognitive architectures: core cogni-
tive abilities and practical applications. Artificial Intelligence Review (2018),
https://doi.org/10.1007/s10462-018-9646-y

11. Li, S.W., Blandford, A., Cairns, P., Young, R.M.: The e↵ect of interruptions on
postcompletion and other procedural errors: An account based on the activation-
based goal memory model. Journal Of Experimental Psychology: Applied 14, 314–
328 (2008)

12. Mart́ı-Oliet, N., Meseguer, J.: Rewriting logic: roadmap and bibliography. Theo-
retical Computer Science 285(2), 121–154 (2002)

13. Norman, D.A., Shallice, T.: Attention to action: Willed and automatic control
of behaviour. In: Consciousness and Self-Regulation, Advances in Research and
Theory, vol. 4. Plenum Press (1986)

14. Ölveczky, P.C.: Real-time Maude and its applications. In: Proc. of WRLA 2014,
Lecture Notes in Computer Science, vol. 8663, pp. 42–79. Springer (2014)

15. Ölveczky, P.C.: Designing Reliable Distributed Systems. Undergraduate Topics in
Computer Science, Springer (2017)

16. Ölveczky, P.C., Meseguer, J.: Real-time Maude 2.1. In: Rewriting Logic and Its
Applications 2004 (WRLA 2004), vol. 117, pp. 285–314. Elsevier (2005)

17. Oulasvirta, A., Kristensson, P., Bi, X., Howes, A. (eds.): Computational Interac-
tion. Oxford University Press (2018)

18. Weyers, B., Bowen, J., Dix, A., Palanque, P. (eds.): The Handbook of Formal
Methods in Human-Computer Interaction. Springer (2017)

FMIS 2019 Author Index

Author Index

Adabala, Keerthi 80

Bowen, Judy 21
Béger, Pascal 3

Campos, José Creissac 53
Canny, Alexandre 53
Cerone, Antonio 85
Ciancia, Vincenzo 69
Coppers, Sven 37

Ehlers, Rüdiger 80

Harrison, Michael 1

Jaidka, Sapna 21

Leriche, Sébastien 3
Luyten, Kris 37

Massink, Mieke 69

Navarre, David 37, 53

Palanque, Philippe 37, 53
Prun, Daniel 3

Reeves, Steve 21

Vanacken, Davy 37

Ölveczky, Peter Csaba 85

1

FMIS 2019 Keyword Index

Keyword Index

Coloured Petri Nets 21

Feedforward 37

Formal Method Integration 21

Formal Methods 3, 37, 85

Formal Modelling 21

Formal Specifications 80

Graphical Properties 3

Graphical User Interfaces 80

Human Reasoning 85

Human-Computer Interaction 69

Interactive Software 3

Interactive Systems Engineering 37

Medical Imaging 69

Model Checking 69

Model-Based Testing 53

Petri nets 37

Post-WIMP Interactive Systems 53

Problem Solving 85

Reactive Synthesis 80

Real-time Maude 85

Rewrite Systems 85

Software Testing 53

Spatial Logics 69

Verification 3

1

