What is (Lean) Six Sigma and how it may improve your business performance

Facilitated by Arthur Valle

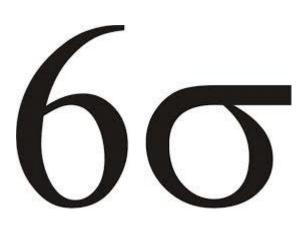
Arthur Valle, PhD

- PhD in Production and System Engineering
- Six Sigma Black Belt (since 2006)
- 22+ years of experience in IT Management: Lean Six Sigma, CMMI, Agile/Scrum etc
- Currently teaching (and researching) at Wintec-Waikato Institute of Technology, NZ
- CEO of trendsetconsulting.com (since 2000)

Content

- Case study
- Six Sigma (big picture)
- DMAIC

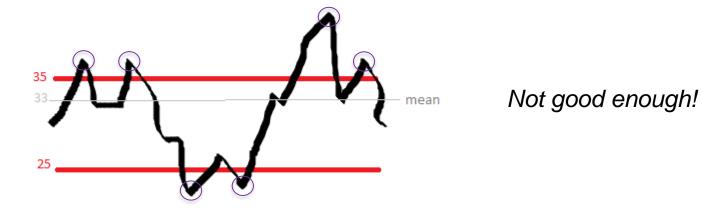
D-Define

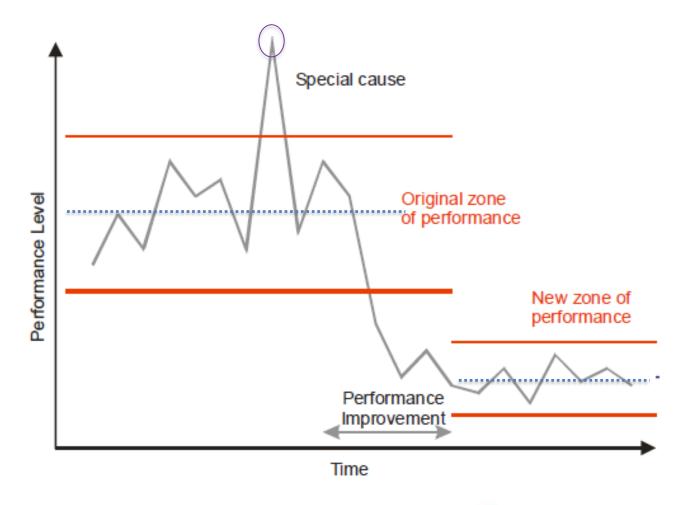

M-Measure

A-Analyse

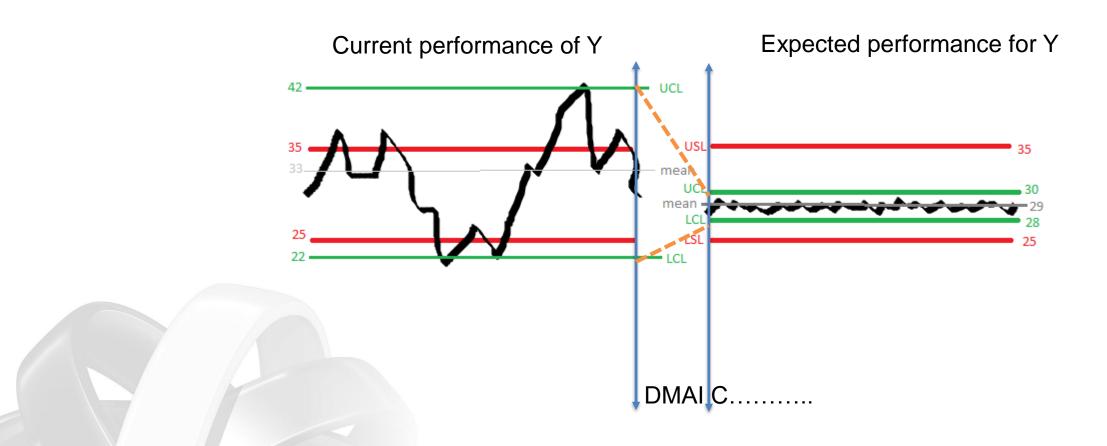
I-Improve

C-Control


- Six Sigma (detailed)
- How to select a Six Sigma project
- Roles & certifications


Case study

- Pizza Delivery.
- Clients are complaining about delays.
- Clients' expectations are: from 25 to 35 minutes.
- We measured recent days and <u>our average was 33</u> <u>minutes</u>.
- 33 minutes seems to be OK, right?


What is Six Sigma?

- An improvement method that aims to improve the mean and reduce variation of the performance of an outcome.
- In our example:
 LeadTime, time elapsed
 from order up to pizza
 actually delivered at
 client's door.

Our case's Six Sigma project

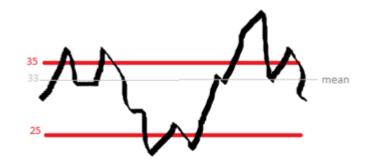
DMAIC

- One of the Six Sigma's "lifecycles".
- It stands for Define, Measure, Analyze, Improve and Control.
- Each phase takes 1 month (on average).
- Deals with Y and x's:
- Y = function(x's) where
 - Y is the outcome(s). Ex: Productivity, Defect Density, Lead
 Time
 - x's are the factors that actually impact the performance of Y. Ex:
 Seniority, Requirements Stability, Automation Level Winter

D-Define

Y?

Main activities:


- Define the problem
- Plan the project

Main outputs:

- Problem statement
- Project scope
- Project charter (incl. business case)

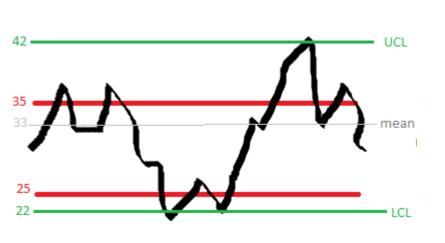
D-Define (case study)

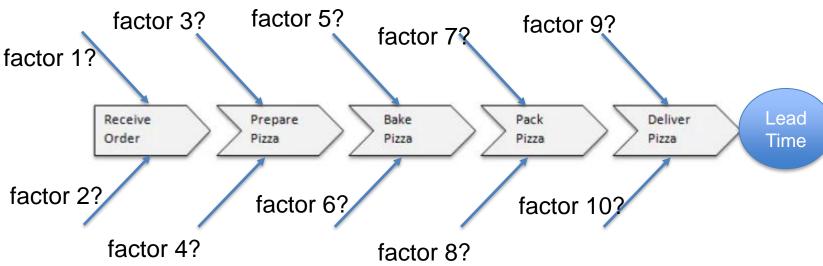
Our project aims to reduce our lead time by this % by this date

M-Measure

Y! x's?

Main activities:


- Measure Y
- Identify and prioritize potential x's
- Collect data for x's


Main outputs:

- Performance baseline for Y
- Data collected about prioritized x's

M-Measure (case study)

Lean's VSM-Value Stream Mapping:

VAC: Value added to the client

VAB: Value added to the business

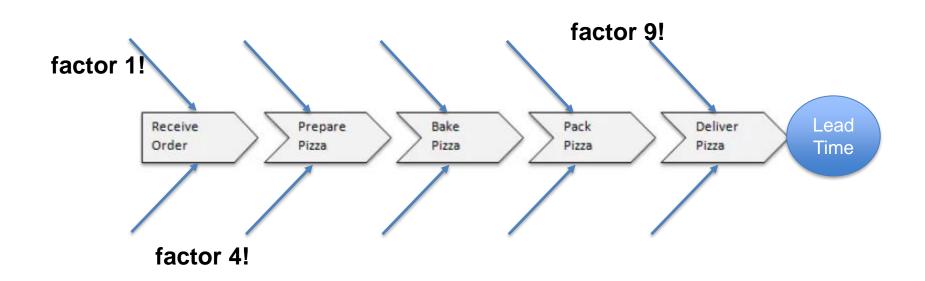
NVA: Non-value added

Also:

A-Analyze

Y=function(x's)!

Main activities:


- (statistically) analyse data
- Prove (or not) potential x's
- Establish x's to Y function

Main outputs:

- Performance baseline for the proven x's
- Formula that relates proven x's to Y's

A-Analyze (case study)

LeadTime (minutes) = 31.32 - 2.45*factor1 - 1.17*factor4 - 0.95*factor9

factor1 – time to transfer the order from the phone operator to kitchen

factor4 – availability of ingredients

factor9 - delivery person's knowledge about the area

I-Improve

Actions to improve proven x's

Main activities:

- Identify actions to improve performance of proven x's
- Plan implementation of identified improvement actions

Main outputs:

Implementation plan(s)

I-Improve (case study)

LeadTime (minutes) = 31.32 - 2.45*factor1 - 1.17*factor4 - 0.95*factor9

Actions

Action for factor1 -> automate transference of the order to kitchen Action for factor4 -> control and ensure availability of ingredients Action for factor9 -> install GPS

factor1 – time to transfer the order from the phone operator to kitchen

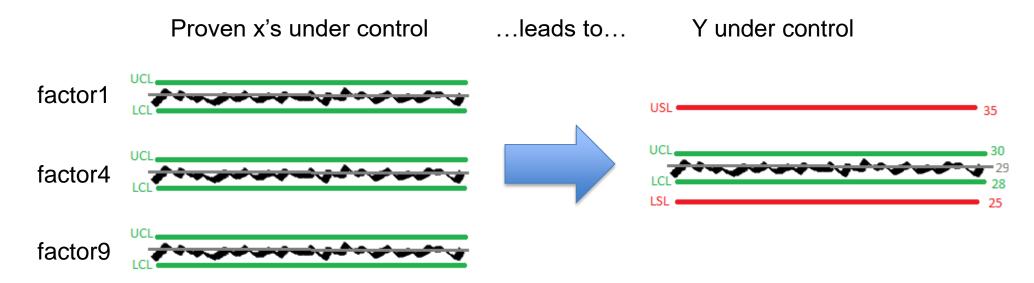
factor4 – availability of ingredients

factor9 - delivery person's knowledge about the area

C-Control

(Proven) x's and Y under (statistical) control

Main activities:

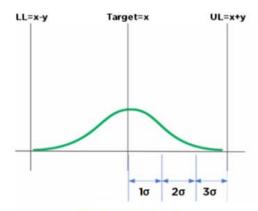

- Monitor performance of x's (and by consequence Y)
- To "put things back on track" when performance deviates from expectations

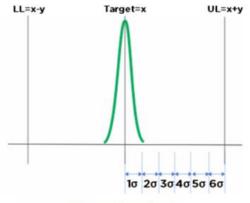
Main outputs:

Action plan(s) for "special causes of variation".

C-Control (case study)

factor1 – time to transfer the order from the phone operator to kitchen


factor4 – availability of ingredients


factor9 - delivery person's knowledge about the area

Six Sigma

- A Process Improvement Methodology
- Developed at Motorola and popularized by GE-General Electric
- Main characteristics:
 - It addresses a <u>strategic problem</u> or opportunity
 - It should positively impact the client
 - It solves a problem for which the cause is unknown
 - It involves <u>statistics and data-driven</u> decision making
 - It may be combined with Lean (i.e <u>Lean Six</u> <u>Sigma</u>)

Sigma Level = 3

Sigma Level = 6

Sigma Level	Defects per Million	Yield
6	3.4	99.99966%
5	230	99.977%
4	6,210	99.38%
3	66,800	93.32%
2	308,000	69.15%
1	690,000	30.85%

How to select a Six Sigma project

- Main criteria:
 - Is this strategical to the company?
 - Does it positively impact the client?
 - Do we know the cause(s) of the problem?
 - Is the expected return higher than 100K dollars?
 - Can it be done in 5 to 6 months?

Roles & certifications

(project) roles:

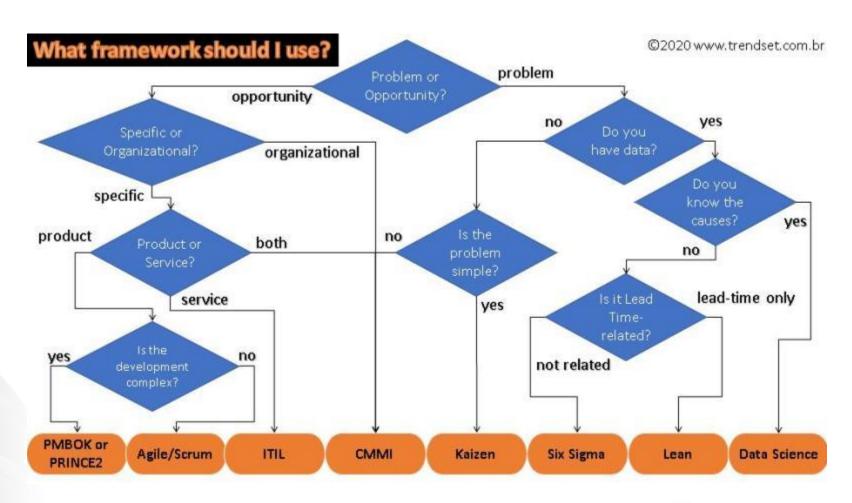
- Champion (Sponsor)
- Process Owner
- Project Leader (Belt)
- Project team

SixSigma certifications:

- Master Black Belt
- Black Belt (at least 4 weeks of formal training + conduction of 1 complex DMAIC project)
- Green Belt (3-5 days of formal training + conduction of 1 simple DMAIC project)
- Yellow Belt (4-8 hours of formal training)
 Note: there's no single institution managing Six Sigma and certification

Thank You!

Arthur Valle, Black Belt


Principal Academic Staff Member

arthur.valle@wintec.ac.nz

Additional slide(s)

