Implementing a UUID Primary Key in a
Distributed Email Client Application

Dr Tim D. Hunt

Waikato Institute of Technology
(Wintec).

Tristram Street

Private Bag 3036

Hamilton 2020

New Zealand
tim.hunt@wintec.ac.nz

This quality assured paper appeared at the 1st annual conference
of Computing and Information Technology Research and Education
New Zealand (CITRENZ2010) incorporating the 23 Annual
Conference of the National Advisory Committee on Computing
Qualifications, Dunedin, New Zealand, July 6-9. Samuel Mann and
Michael Verhaart (Eds).

Abstract

This paper describes the incorporation of Universal
Unique Identifiers (UUIDs) into the database design for
a children’s email application. Implementation of the
new design is described including the mechanism for
sharing data between installations using an IMAP based
email server. Testing of the software has
demonstrated that the design results in a functional
distributed application although there remains scope for
improving the synchronization algorithm. The Mifrenz
application is available from http://mifrenz.com for
download.

Keywords
Mifrenz, Email, Children, UUID, Database, Design,
Primary Key, Synchronization.

Introduction

A critical part of database design is the choice of data
for a table’s primary key (PK). The traditional
academic view is to look at the available natural data
and select an appropriate attribute or group of
attributes. The alternative view is to use an artificial
key, typically implemented as an automatically
incrementing value. In previous work, Hunt (2010)
observed that a significant gap exists between what is
normally taught to students (use the natural data) and

71

72

what actually happens in practice (use an artificial
value). It was noted that although this topic has been
discussed at length in the online community, there
seems to be a lack of coverage in the academic
literature.

Hunt (2010) described the situation where data needed
to be synchronized between two or more computers via
an email server. A PK was required that would allow a
new record to be added to a table, before the data was
fully synchronized with remote data. This ruled out the
use of an automatically incrementing value, as the next
value in the sequence could not be reliably determined.
However, the use of natural data was possible, as each
user did have a unique email address and so this was
chosen as the PK. A major drawback of this design was
the issue of dealing with a user wishing to change their
email address, as allowing the PK to change is seen as
poor database design and should be avoided if possible.

Universal Unique IDentifiers (UUIDs) (Leach, Mealling &
Salz, 2005) are a particular type of artificial data that
can also be used as a PK. Their use is of particular
significance when data needs to be synchronized
between data repositories when the connection
between them is not always available e.g. mobile
devices may have intermittent access to the internet.
Hunt (2010) discussed the possibility of using UUIDs in
a children’s email application and this paper describes
that process of implementation.

Mifrenz email application

Mifrenz is an email application designed specifically for
children to be able to send emails in a safe
environment. Unlike most other solutions for children,
Mifrenz is not a server based application, but instead is

installed on the user’s own computer. This design
means that a high availability server does not have to
be provided and so costs can be lower. The design
does introduce the problem of how a parent can easily
update the status of a child’s contacts and how a child
can access his or her email from multiple locations.
Mifrenz solves these problems in a similar way to
Microsoft Outlook in that email and contact information
is stored on a server and the application synchronizes
with the server. For Mifrenz the server is a third party
email server, normally Gmail (Welcome to Gmail, n.d.),
and the IMAP protocol (Crispin, 2003) is used to
communicate with the server. Unlike an email
application used by adults, an email application for
children needs to filter the emails that a child sees
based on the child’s contacts list. Therefore, Mifrenz
needs to intercept the emails that arrive at the child’s
IMAP account and determine what should be done with
each email. The IMAP protocol does not provide for a
standard way to store contact information and so
Mifrenz uses a standard email to store the contact
information.

What are UUIDs?

According to Leach, Mealling & Salz (2005):

"...a Uniform Resource Name namespace for UUIDs
(Universally Unique IDentifier), also known as GUIDs
(Globally Unique IDentifier). A UUID js 128 bits long,
and can guarantee uniqueness across space and time.
UUIDs were originally used in the Apollo Network
Computing System and later in the Open Software
Foundation's (OSF) Distributed Computing Environment
(DCE), and then in Microsoft Windows platforms.”

The ability to create a unique key “across space and
time” makes the UUID ideally suited for use as an

artificial PK in situations where remote applications
cannot communicate to determine the next value in an
automatically incrementing sequence.

UUID’s can be considered a mature technology as they
are now a critical part of various networking
technologies, e.g. the Bluetooth wireless protocol
(Bluetooth Special Interest Group, p83) and the
Remote Procedure Call protocol (The Open Group,
1997).

The Java programming language (Java Platform
Standard Ed. 6, n.d.) has incorporated the generation
of UUIDs through the provision of the UUID class and
so the use of UUIDs is provided for by a robust
programming environment. Using Java a UUID can
easily be created using the following code, myUUID =
UUID.randomUUID(), where myUUID has already been
declared as variable of type UUID. From then on,
myUUID can be compared to other UUIDs using the
UUID compareTo method and can be converted to a
text representation using the UUIDs toString method.
The text representation enables straightforward storage
of UUIDs in a local database or in an email stored on an
email server.

Original database design using natural data
Original database design using natural data

Figure 1 shows the original Entity-Relationship Diagram
(ERD) for the database. The email address was used
as the PK for the User entity as this could be
guaranteed to be unique for each user. This
immediately constrained the application, making email
address changes problematic, and also restricting each
user to only one email address (although it was never
intended to allow a user to have multiple email
addresses). User data is not actually shared between

separate installations of Mifrenz, and so using the email
address as a PK for the User data was not in itself
necessary. However, the Email, Contact and Joke
entities can now use the email address as a foreign key
relating back to the correct user. The PK of the email
entity is a composite of the user email address and the
time that the email was entered into the database. The
software logic assures that for location no two emails
are inserted at exactly the same time. It is assumed
that a user is not using the software at two locations
concurrently, because if they were, it is possible that
two records could have the same values of email
address and creation time. The Email entity also
requires a foreign key (contact email address) from the
Contact entity so that an email can be related to the
contact that an email was either sent to or received
from.

[~ Email [Contact

Attributes 0.* 1 Attributes
userEmailAddress{PK} | userEmailAddress{PK}
createTime{PK} contactEmailAddress{PK}

- contactEmailAddress 0.+
o
1 1
ElJoke
Eluser 1 0.” Attributes
Attributes — | jokeTitle{PK}
userEmailAddress{PK} userEmailAddress{PK}

Figure 1. ERD of the original Mifrenz database design. It can
be seen that each table uses an email address as either the PK,
or as part of a composite PK. Only the attributes that form part
of the relationships between entities are shown.

74

The Contact entity uses a composite PK consisting of
the user email address and the contact email address.
This allows contacts for all the users to be stored in the
same table, yet a simple SQL query can retrieve just
the contacts for the current user. Here the use of the
natural data, i.e. the contact email address, again puts
a restriction on the application: this time according to
good design principles the email address of a contact
should not change. Initially it was thought that this
was not a significant restriction as the purpose of the
software is to control emails based on the email
address rather than a person’s name. A contact is
approved by a parent based on the email address and
so a change in email address was initially thought of as
just a new contact being created. This concept was
later changed to the idea that a contact could change
their email address with parental approval. As the
software does not display email addresses to the user,
but rather displays the contact name, there would have
to be a rather complicated process of showing that
emails from two different email addresses were really
from the same contact.

A feature of the Mifrenz application is the creation and
sharing of jokes. Each joke needs to be uniquely
identified and associated with a particular user. It was
decided that for a user, each of their jokes should have
a unique title and therefore a composite PK of joke title
and user email address was chosen. Again, it can be
seen that a users email address should never change,
and not so obviously, a joke cannot be received (or at
least inserted into the database) with an identical title
to one already present in the database.

In summary, the use of the email address was chosen
as the whole or part of a PK after following the

standard database design ‘rules’ that are taught to
students. It has been shown that there are major
drawbacks with this approach for this particular
application. Yet, the alternative approach of using auto
numbers (auto number) as the PK is not a solution
when the data is distributed and offers no guarantee
that the sequence of numbers can be synchronized
before the need to know the next number of the
sequence. This is obvious when you consider the
following example.

Two siblings share their time between two households.
Mifrenz is installed on PCs at both locations and there is
currently a child at each location using the application.
Each child creates a new email — what should the next
automatically incremented number be? The database
can only be synchronized between locations via the
child’s IMAP server (typically their Gmail account), and
this only happens once they use the software at the
other location. In fact in an extended family situation,
they may never use the software at the other location.

A place for auto numbers

The use of UUIDs for PKs for the entities that share
data between locations is discussed in the next section,
but first it is worth considering the situation where data
is not shared, that is the User entity. In the previous
design, the user email address was used as the PK, but
this has been shown to have drawbacks. The use of a
UUID seemed unnecessary, as there was no need to
share this data with other locations. When a child uses
the application, the application knows who is logged on,
and so any data that is downloaded from the users
IMAP account, is obviously for that user. It was
decided that it was probably straight forward to use the
correct user identification number (userld) when a row

of data, that has just been retrieved from the IMAP
account, is inserted into the database for that user.
This userId will not be stored with any data, for any of
the entities, on the IMAP account as each user’s data is
stored in their own IMAP account and so belongs to
them. This means that there is no attempt to
synchronize userlds between installations of the
application, which results in the possibility that a user
has a different userld at each location. The userld is
never shown to the user (as good database design
suggests) and so the user is not going to be confused
by this situation.

Referring back to Figure 1, the userld can now just
replace the user email address attribute in each of the
entities.

Distributed database design using UUID’s
The case has been made for using UUID’s for the
entities that are shared and therefore it was decided to
reengineer the Mifrenz application to use a UUID as the
PK for the Email, Contact and Joke entities. Figure 2
shows the new ERD with UUIDs being used for the PK
for the Email, Contact and Joke entities. As discussed
above, the User entity now uses an auto number, the
userld, for its PK. It was also decided that it would be
useful to keep track of who created a particular joke,
and so the Joke entity also uses the contactUUID as a
foreign key. If the Joke was created by the user, the
contactUUID can be left blank, hence the 0..1
multiplicity at the Contact end of the Contact-Joke
relationship.

El Email =l contact
Attributes o+ 1 Attributes
emailUUID{PK} | contactUUID{PK}

- userld - userld
- contactUUID 0.*
- 0.1
0.* 0.*
1 =l Joke
0 * Attributes
| User j,.,-/ jokeUUID{PK}
Attributes - userld
userld{PK} - contactUUID

Figure 2. The reengineered database design that uses UUID's
for the PKs of the Email, Contact and Joke entities. The User
entity uses an automatically incrementing value, userId for the
PK.

As the original design (Figure 1) used the user email
address for the PK of the User entity, the user email
address was unique. This uniqueness is still required
(each user should have a different email address) and
SO a unique constraint is placed on the email address
attribute in the User entity. Also, each contact should
only occur once for each user, and so the Contact entity
has a unique constraint consisting jointly of the contact
email address and the userld attributes.

Implementation

Mifrenz is written in the Java programming language
and uses the HyperSQL database (Hsqgldb — 100% java
database, n.d.) for data storage on the local computer
and connects to an IMAP email store (currently only
Gmail). IMAP does not provide a standard for access to

75

76

contact information or for that matter jokes. In any
case, Mifrenz requires additional attributes for contacts
such as the status of a contact’s approval. These
limitations were circumvented by using a normal email
for the storage of contact and joke data. The data was
stored in plain text in the body of an email, one email
being used for each contact or joke. Figure 3 shows
the contents of an email being used to store contact
data. The main points of significance from this paper’s
perspective are the first line that holds the contactUUID
and the deliberate absence of user identification as
described above.

contactUUID cbb08fad-9225-4042-ab73-486988ce50ac
contactEmailAddress tim hunt@wintec ac.nz

firstName Dad

lastName Work

createTime 1260827498618

lastModifiedTime 1265927852824
parentApprovalStatus APPROVEDCHECKATTACHMENT
childApprovalStatus APPROVED
strangerApprovalStatus NOTSET
childinformedOfDeclinedDecision false

deleted false

contactType CHILD

createdBy CHILD

Figure 3. The text contents of an email stored on an IMAP
account. This email is being used to hold the data of a single
contact.

When a user logs on to Mifrenz, the contents of the
local database are immediately displayed for the logged
on user. This is significant, as a previous design did
not store any data locally, but the time it took to
retrieve and display the user’s data was found to be
unacceptable. Mifrenz then connects to the user’'s IMAP
store and synchronizes the contacts there with the

contacts stored locally. It is important that this is
performed before any new emails are downloaded, as
an email will only be displayed to the user if it has
come from an approved contact. If an email is from
someone who is not yet a contact, a challenge email is
sent back to that person as the first step of an
authentication procedure. To avoid a challenge email
being sent multiple times, it is important that
synchronization of contact information occurs first.
Once contact synchronization has occurred, new email
can be downloaded, processed and displayed if
appropriate. Finally synchronization of the already
processed emails and jokes can occur e.g. deleting
emails that were deleted at another location. Figure 4
shows a screen shot of the user interface as seen by a
child. Information such as when an email was sent or
received is deliberately missing in order to create a
simpler interface.

SAaA- My InBox Tﬁllﬁ

Regly

Continue to

= | My Friends
{Contact]

™ T s botets i =

= T e [Change Petur
rem 1
I Tim Gonail 15 My frend | Dadd Home
r"*' Inbee Dad Home 1 o
& fudtime e I ——— oectnal

K I
r= —
|

— 6]

Figure 4. The child user interface of the Mifrenz application.
The interface deliberately displays less information than a
normal email application intended for adults.

Testing and future work

The use of UUIDs in this application has proven to be a
robust and successful technique for synchronizing data
across multiple installations. The software has been
installed in two locations and functional testing has
shown that the data can be successfully replicated. To
aid with ongoing testing, a log file of which functions
are used and errors that occur is created and emailed
to the developer each time the software is used (by the
developer’s children). Mifrenz is also available to
download from http://mifrenz.com and can be used for
a trial (with data collection) or can be purchased for
actual use, in which case logging of data ceases.

Testing has highlighted the current poor performance of
the synchronization process. This normally is not an
issue as it occurs as a background process of which the
user is unaware. However, when the user closes the
application, a final synchronization occurs which the
user has to wait for before shutting down the computer.
A similar situation seems to happen with Microsoft
Outlook which manifests (at least with the Vista
operating system) when it is shut down immediately
after sending an email. However, it is believed that the
current algorithm wused for synchronizing can be
improved and this is expected to be the subject of
future work.

Future work includes the plan to produce a multi-lingual
version of Mifrenz utilizing the inbuilt Java capabilities
for internationalization support.

Discussion

This work was undertaken in the context of teaching
and indeed learning database design. It has taken the
author on a journey from repeating the mantra of using
natural data for PKs, to considering auto numbers, and
finally to UUIDs. It is difficult to envisage this journey
happening if it was not for the author working on an
application that he wishes to share with a wider
community: working through text book examples would
unlikely have had a similar result. The author believes
this experience will greatly enrich the ‘real world’
practitioner expectations of teaching and learning at his
institution.

Summary and Conclusions

Previous work had highlighted the design issues of
choosing a database table’s PK for a distributed email
application called Mifrenz and concluded with the

77

78

suggestion of using a UUID. This work has used a
combination of UUIDs for shared data, and auto
numbers for non shared data. Initial testing has
demonstrated the new design to be robust and it has
been incorporated in the latest version of the software.

Acknowledgements

I would like to thank my two daughters who have
continued to test Mifrenz and given expert feedback on
how it is performing and new desirable features.
Thanks also to my colleagues Bruce Ferguson and Hami
Te Momo for their very useful feedback.

References

Crispin, M (2003). Internet message access protocol -
version 4revl. Network Working Group. Retrieved
February 19, 2010, from
http://tools.ietf.org/html/rfc3501

Hsqldb - 100% java database. (n.d.). Retrieved
February 18, 2010, from http://hsqldb.org/

Hunt, T.D. (2010). Natural or artificial primary key.
New Zealand Journal of Applied Computing and
Information Technology, 14(1).

Leach, P., Mealling, M. & Salz, R. (2005). A universally
unique identifier (UUID) URN namespace. Retrieved
September 15, 2009, from
http://www.ietf.org/rfc/rfc4122.txt

Java Platform Standard Ed. 6 (n.d.). Retrieved
February 19, 2010, from
http://java.sun.com/javase/6/docs/api/java/util/UUID
.html

The Bluetooth Special Interest Group (2001). Bluetooth
Profile Specifications: Part K:2 Service discovery
application profile. Retrieved February 19, 2010, from
http://www.bluetooth.com/NR/rdonlyres/52B76D51-
B8B9-44AA-879B-
2E7D90060A23/985/SDAP_SPEC_V11.pdf

The Open Group (1997). CAE specification: DCE 1.1:
Remote procedure call: Document number: C706.
Retrieved February 19, 2010, from
http://www.opengroup.org/onlinepubs/9629399/apdx
a.htm

Welcome to Gmail (n.d.). Retrieved February 19, 2010,
from http://mail.google.com/

