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Abstract: The shift towards remote access and control of equipment has become more prominent,
especially due to COVID-19 lockdowns. Access to physical/real equipment for practical learning
remains important for engineering studies. Thus, this paper presents an approach for remotely
accessing and controlling automation equipment for engineering practical activities. Specifically, it
addresses the issue of accessing and controlling machines for programmable logic controller (PLC)
programming tasks. The combination of a scheduler, remote desktop access, graphical user interface,
and a micro-controller allows students to work remotely on practical equipment. The lab computer
can be accessed via a remote computer to select one of multiple equipment for practical activities. A
prototype system was constructed as proof of concept. The prototype system functions as required.

Keywords: programmable logic controller (PLC); automation; control; remote access; micro-controller

1. Introduction

The highly dynamic environment of higher education has presented a range of chal-
lenges and opportunities. Some of these challenges and opportunities have arisen due to
limitations of facilities and resources in educational institutions. Recently, the COVID-19
pandemic has also necessitated physical distancing and remote learning in many countries
around the globe. Blended and online delivery of courses has become increasingly relevant
during lockdown and physical distancing scenarios. Delivering and managing online
and digital learning has been a crucial part of blended/online courses. In this respect,
technology has become a powerful tool to develop educational systems. The internet has
become a powerful tool for business innovation and positive change in education.

While many course learning materials and activities are made available online [1–3],
executing practical assessments with physical equipment can be challenging. Often it is
easier to conduct these practical assessments in the traditional way, requiring the students
to be physically present with the equipment. In face-to-face learning, students often
require additional time to complete their practical activities outside the scheduled class
times. Classroom access and lab/equipment availability are the main challenges faced,
especially in shared learning spaces. A solution to this problem is to allow the students to
complete their practical work off-campus by providing a remote access to the on-campus
lab equipment. The internet plays a crucial role in enabling the remote access. This concept
can be used to support distance learning and thus to enable the students to remotely
perform and monitor their practical work.

A review of contemporary virtual and remote laboratory implementations is pre-
sented in [4]. According to the authors, a virtual lab uses programs to simulate laboratory
environments where students access and conduct experiments in a virtual space. On
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the other hand, a remote lab is where experiments are located physically away from the
experimenter, and the experiments are conducted in a real physical environment. The
authors’ review and analysis confirm the advantages of virtual and remote laboratories
such as 24 × 7 access, flexibility and freedom of learning pace, and reset/retrial without
resource wastage. Several implementations are reviewed, including virtual and remote
laboratories for programming robots [5], Virtual Instrument Systems in Reality (VISIR) for
engineering [6], and VPLab for virtual programming to develop computer programming
knowledge and skills [7]. There were no reviews on remote laboratories for programming
PLC controlled devices in real physical environments.

Maiti et al. [8] discuss Remote Access Laboratories (RALs) and Remote Laboratory
Management Systems (RLMSs) for distributed remote labs. Remote Access Laboratories
have been used to establish experimental expertise on practical engineering topics. Dis-
tributed remote laboratories aim to share experiment through a distributed architecture
between institutions and individuals. Experiments from various fields are combined as
part of a greater system. Remote Laboratory Management Systems (RLMSs) integrate
experiments using multiple control strategies. When incorporating an existing experiment
into a new distributed RAL system, analysing the experiment with respect to its host or
new RLMS is useful in deciding the best methods for inclusion. They propose a framework
called SHASS (Software, Hardware, Assessment, Support, and Share-ability) for such
evaluation based on experiment properties.

The development of a distance learning system using virtual reality and augmented
technologies is discussed in [9]. Two research directions considered are: use of augmented
reality applications in the development of e-labs for undergraduate students, master’s
students, and researchers; and learning systems and simulation of robotic systems based on
movements in a virtual reality environment, respectively. Developing the e-lab programme
required the configuration of sensors and the development of a communication network.
The remotely controlled robot system is a 5-axis Mitsubishi RV-M1 Move master which
uses a CCD camera for remote-control observation. A computer determines each object’s
position and orientation, and then the human operator sets the order of robot operations.

Internet web-based laboratories that enable remote operation of experiments used for
training in undergraduate engineering courses have been implemented in [10]. This imple-
mentation uses LabVIEW software to perform remote control and monitoring of laboratory
equipment. The approach is beneficial for developing countries where resources can be shared
through the internet. A disadvantage is the cost associated with purchasing and utilising Na-
tional Instruments data acquisition (DAQ) boards and LabVIEW software. The experiments
described in the paper use LabVIEW virtual instruments as the controllers for electropneu-
matic and electromechanical systems. This would be an unnecessary additional layer of
control and cost for the PLC-controlled devices requiring remote access in this research.

The development of a remote lab with two user interfaces for teaching programming
and robotics using Arduino boards is presented in [11]. One of the interfaces is based on
visual programming while the other interface is similar to the original Arduino textual
programming language. Access to the Arduino lab can be made via a mobile application or
web browsers. The authors claim their implementation is suitable for courses in institutions
with limited resources. While the implementation focuses on low-cost, it is primarily
developed for teaching Arduino micro-controller programming, not PLC programming.

A concept for remote programming, configuration, and monitoring for the devel-
opment and testing of embedded devices is presented in [12]. Basic proof-of-concept
functionality has been achieved allowing for easy interaction with remote embedded de-
vices. The authors claim the hardware price of the developed prototype was lower than
commercial solutions. However, no numerical values were provided. Another embedded
systems design remote laboratory system is presented in [13]. Four experiments are con-
nected via USB to a server PC and a remote user accesses the server via the internet. Each
experiment has a separate micro-controller, and a web-interface controls them.
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Bellmunt et al. [14] present a remote laboratory for PLC programming based on a
flexible manufacturing cell. The developed system consists of a separate PLC for each
station and an IP camera for observation. The PLCs are connected over the local area
network for local control. A router and internet connection are used for remote control. In
this system, the stations are dependent on each other, and it is an expensive system since
it requires multiple PLCs. This type of system is also set up for network (ethernet) PLC
programming. Some PLCs, such as the one in this paper, are set up for USB programming.

While there are other examples of remote virtual PLC-based labs [15,16], the primary
focus of this paper is on remote laboratories for programming PLC-controlled physical
devices. Other examples similar to [14] include [17–20]. All these implementations are
developed for web-based programming. The system presented in [17] uses a computer
as a WebAccess web server to remotely monitor and control a PLC based system. Their
emphasis is not on remote learning but on developing advanced PLC programming skills
of remote monitoring and control. The design of three web-based automated systems
using a client-server software system termed Remote Control System Architecture (RCSA)
is presented in [18]. The three systems also have their own associated PLCs, unlike
the research presented in this paper, which uses a single PLC due to resource and cost
limitations. Using web browsers can be simple and effective for the user as mentioned
in [20]. A drawback is that the system developer needs to be proficient in client-server
tools such as JavaScript, PHP, ASP.NET, and databases [19,20].

This paper presents the design of a solution for providing access to multiple automa-
tion lab equipment remotely. Initial work on the design is presented in [21]. A modified
final version of the design that was prototyped and tested is described in this paper. The
emphasis of the design is on a low-cost solution that enables students to program and
operate PLC-based equipment remotely in a way that is similar to being physically present
with the equipment. This involves remotely accessing free software to program PLC that is
connected to a computer via a USB cable. Additional software and an embedded system
were developed to facilitate the selection of hardware connected to the PLC.

2. Materials and Methods

This section begins with an overview of the system in the form of a block diagram
and an operation flowchart. Following this, information about the system components and
their integration is presented in detail.

2.1. Overview of System

Figure 1 illustrates a block diagram of the remote laboratory system. A single PLC
module (Schneider Compact PLC TM221CE24T [22]) is linked to two hardware equip-
ment: a forward/reverse conveyor system (experiment 1) and a Festo sorting machine
(experiment 2).

In the original experimental setup, a 24-way Centronics cable directly connected the
PLC module to one of the hardware equipment. The cable had to be manually transferred
between the hardware equipment. This was subsequently replaced by an intermediate
micro-controller that controls the switching between the two hardware. The PLC module,
micro-controller, and camera are always connected to a laboratory computer via USB cables.
The laboratory computer has the software for programming the PLC module (SoMachine
Basic). A remote user can connect to the laboratory computer via a remote desktop
connection software to program the PLC module and select the hardware equipment.

The PLC modules are generic and shared between multiple courses and classes on
campus (Figure 2). Due to constraints such as limited availability of PLC modules and
shared learning spaces, the design utilises a single PLC module to control multiple hardware.
The micro-controller serves as a secondary control device to power on/off the hardware and
disable the hardware if there is a malfunction on the PLC module. Figures 3 and 4 show the
hardware to be connected to the PLC module via the micro-controller.
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Figure 1. Block diagram of the remote laboratory system.

Figure 2. Schneider TM221CE24T PLC module.

Figure 3. Experiment 1 forward/reverse conveyor system.

A simplified flowchart illustrating the procedure for operating the remote laboratory
system is shown in Figure 5. Users are required to book time slots for using the system via
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a remote lab access schedule online document (Figure 6). When it is a user’s turn to use the
system, they first open the remote access software on their computer. Next, they connect to
the laboratory computer via a username and password. Following this, they need to open
the micro-controller software (Remote Lab, refer to Section 3.1) to select the camera and
access serial port settings. After selecting an experiment hardware for use, the user can use
the standard PLC programming software to write, download, and test programs. Upon
completion of the experiment (or time period expiry), the user powers off the hardware,
closes the micro-controller software, and disconnects from the laboratory computer.

Figure 4. Experiment 2 Festo sorting machine.

Figure 5. Simplified flowchart of the remote laboratory operating procedure.
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Figure 6. Sample of remote lab access schedule.

2.2. System Component Descriptions
2.2.1. Remote Screen Sharing Software

The purpose of the screen-sharing software is to allow a remote student computer to
access and control the laboratory computer which is connected to the experiment hardware.
Three possible options to facilitate this were evaluated: TeamViewer [23], ISL Online [24],
and Web Server [25].

TeamViewer is a remote access and control computer software that permits mainte-
nance of computers and other devices. It requires software to be installed on both the
remote computer and the laboratory computer. ISL Online also provides remote access
and control of computers and mobile devices. It also requires software to be installed on
both the remote computer and laboratory computer. A Web Server hosts a web application
that provides features such as lab registration, scheduling, and logging. A lab server
connection provides the addresses and application (interface) through which users can
work on experiments. Software such as LabVIEW player simplifies the development of the
application interface.

ISL Online and Web Server were not considered to be “low cost” for the development of
the system. TeamViewer was selected for use because a functional free version is available
that suits the requirements of the application. The main features of TeamViewer are:

• Remote wake, restart, and install of applications on devices running TeamViewer client;
• Secure remote access;
• Control of a remote computer or Android device as if a user were sitting in front of it.

Figure 7 illustrates the window that opens when TeamViewer is run on the remote
computer. A partner ID and password (from the laboratory computer) is required to access
and control the experiments on the laboratory computer.

2.2.2. Graphical User Interface (GUI) and Camera

The purpose of the GUI is to provide the control buttons and visual layout for facili-
tating the powering and selection of the hardware. This is achieved via communication
with the micro-controller. It also monitors the status of the hardware and displays a live
camera feed. This allows the remote user to operate the equipment in a safe manner.

The GUI is a Windows application and some programming languages that could
be used to develop the application include C++, C#, Java, or Python. An important
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factor considered in the selection process was serial port communication to exchange
data between the laboratory computer and micro-controller. Since there are many freely
available tutorials on serial port communication with micro-controllers, the GUI was
developed using Visual Studio [26] and C# programming language [27].

Figure 7. TeamViewer window.

Since the control is effected by a micro-controller connected to the laboratory computer
via USB, a standard USB web camera is sufficient to monitor the experiment hardware. A
Logitech C920 HD Pro USB web camera [28] was selected for use (Figure 8). The camera
has a diagonal field of view of 78◦, dual microphones for stereo sound, auto focus, and
auto light correction which are sufficient for the task.

Figure 8. Logitech C920 HD Pro web camera.

2.2.3. Micro-Controller

A micro-controller is required to interface the hardware apparatus to the GUI program
on the laboratory computer for switching and control. The micro-controller decodes
the serial port logic commands from the GUI and connects or disconnects the required
hardware to the PLC. It also sends feedback to the GUI via serial communication.

A readily available example of controlling LEDs from a Visual Studio-based GUI via
an Arduino micro-controller [29] was the inspiration for selecting the Duinotech MEGA
2560 r3 micro-controller [30]. The source code was developed in Visual Studio 2013 and
required some modifications to be compatible with the latest versions of Visual Studio.

In this remote laboratory implementation, a USB cable connects the micro-controller to
the laboratory computer. The USB cable is used for data communication and also provides
sufficient power to run the micro-controller. The main reason for selecting the MEGA 2560
is that it has a large number of digital inputs and outputs to interface the two hardware
experiments with the PLC. There are also sufficient additional pin connections to control
more hardware experiments if required.

Arduino Integrated Development Environment (IDE) with C programming language
was used to write and upload control programs to the Arduino board. Switching between
the control lines of two hardware equipment is actuated by two sets of Arduino compatible
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12 V 8-channel relay boards. Two additional sets of 12 V DPDT relay power on/off the
machines. Figure 9 illustrates a simplified flowchart of the micro-controller control program.
Various commands are sent from the GUI program to the micro-controller program to
facilitate the switching of control and power lines. Figure 10 shows the micro-controller
and 8-channel relay boards.

Figure 9. Flowchart of the micro-controller control program.
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Figure 10. Micro-controller hardware. (a) Duinotech MEGA 2560 r3; (b) 8 channel relay boards [30].

3. Results

After selecting the components for the design, the GUI layout and programming,
micro-controller programming, and hardware layout were prototyped. Sample PLC pro-
grams were also developed to test the operation of the hardware.

3.1. GUI Program Layout

Figure 11 illustrates the final layout of the GUI program. The key parts of the GUI are
explained below:

• Video Screen—The white rectangular portion under the heading “Webcam” is allocated
to show the video of the hardware. This is accomplished via the web camera installed
in the lab. The video captured from the web camera inside the lab is made visible in
this section with appropriate programming done with windows forms application.

• Camera Selection—The yellow rectangular block in the bottom left corner of the
window with the heading “CAMERA” is used to select the required camera from the
list of cameras available. Since the laboratory computer is a laptop computer there is
an option to select the built-in HD web camera or the Logitech C920 HD Pro.

• Experiment Selection—The yellow rectangular block in the bottom centre of the
window with the heading “PORT BOX” is used for the selection of the experiment.
Before selecting the experiment, the communication port must be selected from the
drop-down menu. By default, this is COM3 to establish communication between the
computer and the micro-controller.

• Experiment Power—The remaining two yellow blocks on the right side of the window
are used to power on/off each hardware experiment individually.

Figure 11. Layout of the GUI program.



Machines 2021, 9, 138 10 of 18

3.2. Micro-Controller and Hardware Wiring

The USB serial port connection between the laboratory computer and the micro-
controller was set up with a baud rate of 9600. The micro-controller program preconfigures
the pins and inputs or outputs and assigns a default value to the output pins. Figure 12
shows the sample code for serial communication of data on the Arduino micro-controller.
A string of data is read from the GUI program, and the control lines are switched off when
an “off” command is received.

Figure 12. Arduino micro-controller sample serial communication code.

The wiring connections between the TM221CE24T PLC module and the two-experiment
hardware is shown in Figure 13. The two 8-channel relay modules multiplex the connections
to the PLC. When the relays are switched off, the lines are connected to the forward/reverse
conveyor experiment. If the relays are energized via the GUI program, the control lines
are switched over to the Festo sorting machine. Table 1 shows the input–output usage
of the Centronics cable, and Figure 14 illustrates the physical pin connections. Figure 15
shows the connections between the power supply, Duinotech Mega 2560, and the 8-channel
relay modules.
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Table 1. Input output usage of the Centronics cable.

Pin Number PLC Connection FWD/REV Conveyor Festo Sorting Machine

I0 %I0.0 Proximity sensor 1 Gate 1 arm feedback
I1 %I0.1 Proximity sensor 2 Gate 2 arm feedback
I2 %I0.2 Gate 3 arm feedback
I3 %I0.3 Entry PE sensor
I4 %I0.4 Gate 1 PE sensor
I5 %I0.5 Gate 2 PE sensor
I6 %I0.6 Gate 3 PE sensor
I7 %I0.7 Gate 4 PE sensor
O0 %Q0.0 Reverse on Conveyor motor
O1 %Q0.1 Forward on Gate 1 solenoid
O2 %Q0.2 Indicator lamp 1 Gate 2 solenoid
O3 %Q0.3 Gate 3 solenoid
O4 %Q0.4 Indicator lamp 2 Indicator lamp

Figure 13. Wiring connections between the TM221CE24T PLC module and the two hardware.

Figure 14. Physical pin connections of the Centronics cable.
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Figure 15. Power supply, Duinotech MEGA 2560, and relay modules connection.

3.3. Control and Power Box Construction

After finalizing the wiring connections, the control and power boxes were constructed
and the electronics assembled. The boxes were pre-sized ABS plastic cases. Perspex
was used at the bottom of the boxes to mount the electrical and electronic components.
Appropriate cut outs were made for external switches, lamps, connection ports, and
ventilation fans. Following this, the power supply was tested with a multimeter. The
physical connections within the control box were also tested for continuity and correct
logic with a multimeter.

Figure 16 shows the control box after making the required holes and with the panel
board fixed inside. The operation of the micro-controller with the relays were tested with an
external power supply while the power supply box was being constructed. The commands
to operate the relays via the micro-controller for switching the experiments were provided
by the GUI program. The illuminated red lights indicate the successful testing procedure.
Pictures of the fully assembled control box are shown in Figures 17 and 18.
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Figure 16. Testing the GUI program controlling the 8-channel relays via the micro-controller.

Figure 17. Fully assembled control box.

The power supply box layout is shown in Figure 19. Relay control signals from the
Control Box switch on/off the 230 V AC supplies to the experiment hardware. There are
two AC sockets to connect the power supply for each hardware. The power supply box
also provides the 24 V DC required for the PLC logic and experiment hardware.
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Figure 18. Side views of the final control box. (a) Centronics cable connections and exhaust fan; (b) Indicator lamps for
experiment selection and air inlet vent; (c) Power supply connections—USB for micro-controller, and ethernet for relay
controls to power supply box.

Figure 19. Power supply box layout. (a) Sealed box with 230 V AC and 24 V DC outputs; (b) Box with cover removed; (c)
Plan view of open box showing relay connections and 24 V DC supply unit.
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3.4. Sample PLC Programs

To test the operation of the experiment hardware, sample programs were written to
read sensor inputs and send commands to actuators on each of the machines. SoMachine
Basic PLC programming software was used for this. Figure 20 shows snippets of sample
ladder logic programs to test the operation of the forward/reverse conveyor and the Festo
sorting machine. The control line connections between the PLC and hardware were made
via the GUI program.

Figure 20. Sample ladder logic programs to test the operation of the experiment hardware. (a) Snippet of forward/reverse
conveyor program; (b) Snippet of Festo sorting machine program.

Figure 21 shows the full remote laboratory system set up in a teaching space. The
laboratory computer is set up to communicate on the Wintec Institute’s Wi-Fi network.
The remote student computer (missing from Figure 21) was also present in the teaching
space during testing. However, it was connected to Vodafone’s 4G mobile network. The
remote computer was able to stream video and control the hardware without any lag or
delay. A sample video of the full system in operation is available for viewing (Video S1:
demo_video.mp4).

Figure 21. Complete remote laboratory system set up.
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4. Discussion

Each component of the remote laboratory system was tested individually as functional.
The GUI and micro-controller programs successfully coordinate the selection and powering
of hardware equipment. By using TeamViewer, the remote computer successfully connects
to the PLC and downloads automation programs via USB. Users can use cloud storage
such as Google Drive or Microsoft OneDrive to save their SoMachine programs.

The total cost of the prototype system based on the items listed in Table 2 is ap-
proximately NZD 650.00. This excludes the cost of the laboratory computer. A standard
Windows 10 Intel Core i5 processor laptop computer is sufficient for the laboratory com-
puter and would cost approximately NZD 1600.00. Hence, the overall cost (including
laboratory computer) is approximately NZD 2250.00. This is relatively low-cost when
compared with the implementations referenced in the introduction (Section 1). One of the
main benefits of implementation presented in this paper is that all software used is free.

Table 2. Parts list and cost of remote laboratory system.

Item/Part Quantity Total Cost (NZD)

Duinotech MEGA 2560 r3
micro-controller 1 69.90

8-channel relay modules 2 49.80
Logitech C920 HD Pro web camera 1 180.00

ABS plastic cases 2 100.00
GPO power sockets 2 15.00
Ventilation fan kit 1 40.00

12 V 25 W Power supply 1 27.90
12 V 8A DPDT relays and base 2 44.24
Wires and other consumables

(micro-controller jumper cables,
Centronics cable and connectors,

indicator lamps, USB socket, DC power
cables/sockets)

Misc. 120.00

Grand Total 646.84

The developed system can be used for other USB programmed PLC automation sys-
tems such as those based on Schneider Zelio Logic SR2/SR3 PLCs [31]. The programming
software for the Zelio Logic PLCs is also free. This provides a useful tool to learn the basic
concepts of PLC programming and to demonstrate simple automation on real physical
equipment remotely.

User testing of the system was limited due to the current low enrolments of students in
the PLC programming course. We have also been very fortunate to not have any COVID-19
lockdowns since the development of the system. However, the system was developed by
former students of the PLC programming course, and they took feedback from former
students in the form of verbal interviews. International students, who typically require
additional time for completing practical work due to part-time work commitments, have
rated the system as being easy to access and control remotely. In addition to this, it was
straightforward for them to transition working on their practical work both on-campus
and off-campus.

5. Conclusions

This paper presented the design and construction of a low-cost system for remotely
accessing and controlling multiple automation equipment. The system provides the remote
user/programmer with an experience of using the equipment that is similar to use when
physically present with the equipment. A GUI program allows the remote user to power
and select machines for operation. The prototype system was constructed, tested, and
correct remote operation was verified.
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Currently, the remote lab system controls two hardware equipment. Control of ad-
ditional hardware can be achieved by interfacing additional relays to unused pins of
the micro-controller. Future work will include extending the system to other machin-
ery/equipment that could benefit from having remote access and control. Remote pan-tilt
capabilities can be added to the camera control to improve remote viewing.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/machines9070138/s1, Video S1: demo_video.mp4.
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