Citation: UNSPECIFIED.
Full text not available from this repository. (Request a copy)Abstract
Reliable empirical models such as those used in software effort estimation or defect prediction are inherently dependent on the data from which they are built. As demands for process and product improvement continue to grow, the quality of the data used in measurement and prediction systems warrants increasingly close scrutiny. In this paper we propose a taxonomy of data quality challenges in empirical software engineering, based on an extensive review of prior research. We consider current assessment techniques for each quality issue and proposed mechanisms to address these issues, where available. Our taxonomy classifies data quality issues into three broad areas: first, characteristics of data that mean they are not fit for modeling; second, data set characteristics that lead to concerns about the suitability of applying a given model to another data set; and third, factors that prevent or limit data accessibility and trust. We identify this latter area as of particular need in terms of further research.
Item Type: | Paper presented at a conference, workshop or other event, and published in the proceedings |
---|---|
Uncontrolled Keywords: | data quality, provenance, commercial sensitivity, accessibility, trustworthiness, empirical software engineering |
Subjects: | Q Science > QA Mathematics > QA76 Computer software |
Divisions: | Schools > Centre for Business, Information Technology and Enterprise > School of Information Technology |
Depositing User: | Michael Bosu |
Date Deposited: | 13 Dec 2016 20:14 |
Last Modified: | 21 Jul 2023 04:31 |
URI: | http://researcharchive.wintec.ac.nz/id/eprint/4942 |